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Executive Summary

The aim of this project was the development of novel tools for the inelastic system-
level reliability analysis of wind excited structural systems within the setting of
state-of-the-art performance-based design. The underlying question was whether
allowing controlled inelastic phenomena in the members of the main wind force-
resisting system could increase the reliability of the system at ultimate load levels.

The main challenge in answering this question is the lack of theoretical and com-
putational models for predicting the inelastic performance of wind excited structural
systems. Indeed, while in seismic engineering there are an abundance of methodolo-
gies and numerical procedures for predicting inelastic behavior of structural systems,
the same cannot be said for wind engineering. Certain fundamental features of wind
excitation, which are not present in seismic excitation – for example the presence of
a significant mean load component (leading to potential ratcheting failure), or long
duration stationary cyclic loading (leading to potential low-cycle fatigue failure)
– make the direct transfer of existing methods developed for seismic applications
unfeasible.

This report outlines the development of a new generation of theoretical and
computational models that respond to this challenge. The theoretical foundation
on which these models are based is the theory of dynamic shakedown. Specifically,
the state of dynamic shakedown is assumed as a safe system-level state for a wind
excited structural system experiencing inelasticity. To enable this limit state to be
assessed alongside any number of global and local limit states written in terms of
inelastic responses such as residual drifts, peak interstory drifts, plastic deforma-
tions, a new class of path-following algorithms were developed. The computational
efficiency of the algorithms in estimating the inelastic response of the system to
a given wind load history, around two orders of magnitude faster than traditional
step-by-step integration methods, allowed their integration with robust Monte Carlo
simulation schemes, therefore enabling efficient reliability analyses of systems gov-
erned by inelastic system-level limit states.

To assess the feasibility and verify the models, a suite of example structures
subject to stochastic wind loads were solved using both the proposed algorithms as
well as computationally intensive step-by-step integration methods. Near perfect
correspondence was seen in all cases, therefore providing confidence in the theo-
retical foundation of the approach. Finally, the proposed methods were applied to
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the reliability analysis of a full scale 3D concrete core tower with outrigger system.
The results demonstrated how a wind excited structural system designed to have
controlled inelasticity can achieve system-level reliabilities that significantly exceed
component-level reliabilities estimated through traditional design procedures.
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Chapter 1

A New Class of Shakedown
Algorithms

The primary goals of the work outlined in this first chapter are:

1. Development of a dynamic shakedown framework within the setting of concen-
trated plasticity that enables the estimation of plastic strains and deformations
together with the state of shakedown. Classic shakedown theory only allows
for the determination of whether a structure shakes down to a safe state, but
not of the strains and deformations involved in reaching this state.

2. Development of a dynamic shakedown framework that enables estimation of
distributed plasticity along the element through application of fiber section
model in dynamic shakedown analysis.

In reaching the first goal, the classic dynamic shakedown is reformulated in terms
of a new solution algorithm that enables the estimation of the plastic strains and de-
formations occurring during shakedown. The algorithm is based on the approaches
outlined in [1.2, 1.3], and therefore on a path-following iterative scheme, similar
to the procedures used in limit analysis. The original method has been applied to
various structures subjected to static loads and has been seen to be numerically
efficient and well suited for finite element implementation [1.2, 1.8, 1.6]. By refor-
mulating this iterative scheme to the dynamic shakedown setting, the foundations
for the development of a framework is defined that will enable the rapid proba-
bilistic assessment of the inelastic performance of wind-excited structures through
the evaluation not only of the shakedown limit state, but also of the total plastic
strains and deformations occurring in structures subject to general (e.g. alongwind,
acrosswind, etc.) long duration dynamic wind load time histories.

In reaching the second goal, the dynamic shakedown framework of the first goal
was reformulated in terms of fiber elements therfore enabling the estimation of
distributed plasticity along the member length. The commonly used displacement-
based (DB) finite element formulation is employed to model the distributed plas-
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Chapter 1 Dynamic Shakedown 2

ticity based on appropriate interpolation functions for the axial and transverse dis-
placements of the member [1.7, 1.9]. By reformulating the iterative scheme in terms
of section forces, including axial forces and moments, at each integration point of
the element, the framework allows a rapid assessment of inelastic performance of
wind-excited structures considering possibility of plasticity forming anywhere along
the element. In particular, in the case of steel structures with material constitutive
law assumed linear elastic-perfectly plastic, the iterative solution scheme is further
formulated based on the fiber approach that discretizes the member section into
several material fibers, in addition to discretization along the element length. This
formulation enhances the framework for its ability to capture the distribution of
plasticity within the section, from extreme fibers to those near the neutral axis.

1.1 Dynamic Shakedown

Dynamic shakedown defines a limit state in which plastic deformation is produced
only during a first phase of finite duration, with the entire subsequent phase remain-
ing purely elastic therefore implying finiteness of the overall plastic deformation. Of
particular interest to this work is how the state of dynamic shakedown precludes, by
definition, the possibility of failure due to: (1) low cycle fatigue (potential across-
wind failure); and (2) incremental plastic collapse or ratcheting (potential alongwind
failure). This section firstly presents a short overview of classic dynamic shakedown
theory followed by the description of the underlying elastic model used to estimate
the dynamic responses.

1.1.1 Classic solution

The dynamic shakedown theory adopted in this project is based on Melan’s well
known static Shakedown Theorem and its extension to dynamic systems subject to
known external load traces (restricted shakedown). This provides a lower bound on
how much the external dynamic loads can be multiplied before shakedown will no
longer occur. This multiplier defines what is commonly referred to as the shakedown
safety factor sp. A linear programming problem has been proposed to directly
identify this limit state under the assumption that the external dynamic excitation
is periodic and infinite [1.14, 1.4]:

sp = max
s,ρ

s

subject to

Q̄
s
= max

0≤t≤T
NTQs(t)

f = sQ̄
s
+NTρ−R ≤ 0

BTρ = 0

(1.1)



Chapter 1 Underlying elastic solution 3

where f is the piece-wise linearized yield vector; N is the block diagonal matrix of
unit external normal to the yield surface; R is the plastic resistance vector; ρ is the
time independent self-stress; Q̄

s
is vector of elastic envelope stress defined as the

maximum of the plastic demand for each yielding mode in time; Qs(t) is the purely
elastic steady state response; while T represents the period of the forcing function.
In particular, Qs(t) are taken as generalized stresses, e.g. moments or axial forces of
the sections, which can be efficiently estimated using the model outlined in Section
1.1.2. The last condition in Eqs. (1.1) represents the self-equilibrated stress state
where B is the kinematic matrix depending on the undeformed geometry of the
system, defined as:

ϵ(t) = Bu(t) (1.2)

with ϵ(t) the vector collecting the time varying and elastic generalized strains. It
should be observed that by setting ρ = 0, the linear programming problem outlined
above provides a means to estimate the elastic safety factor se, defining the limit
state between an entirely elastic response and the onset of inelasticity.

1.1.2 Underlying elastic solution

The dynamic elastic response of the system is governed by the following equations
of motion:

Mü(t) +Cu̇(t) +Ku(t) = F (t; v̄y, α) (1.3)

whereM , C andK are respectively the mass, damping and stiffness matrices of the
condensed system (considering horizontal displacements at each floor level as dy-
namically significant degrees of freedom), F (t; v̄y, α) are the time-varying dynamic
wind loads calibrated to a mean wind speed v̄y at the building top with a mean
recurrence interval (MRI) of y years, while α is the direction of wind with respect
to the building.

The dynamic displacements u, velocities u̇ and accelerations ü can then be
efficiently estimated through a modal analysis as:

u(t) = Φmqm(t)

u̇(t) = Φmq̇m(t)

ü(t) = Φmq̈m(t)

(1.4)

where Φm = [ϕ1, . . . ,ϕm] is the mode shape matrix containing in the structure’s
first m modes while qm(t) = {q1(t), . . . , qm(t)}T , q̇m(t) = {q1(t), . . . , qm(t)}T , and
q̈m(t) = {q1(t), . . . , qm(t)}T are vectors of the first m modal displacement, velocity
and acceleration responses given by directly integrating the following modal equa-
tions:

q̈i(t) + 2ξiωiq̇i(t) + ω2
i qi(t) =

ϕT
i F(t; v̄y, α)

mi

(1.5)

where ωi, mi and ξi are the ith modal circular frequency, mass, and damping ratio
respectively. The ith equation of the system of Eq. (1.5) can be efficiently solved
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through a piece-wise linear integrator based on the concept of digital filters [1.13,
1.12].

Once the responses in the condensed degrees of freedom u(t) are known, any
generic response parameter of interest Q(t), including rotational responses and ver-
tical displacements, can be simply estimated through the expression:

Q(t) = ΓQKu(t) (1.6)

where ΓQ is vector of influence function given by the response in Q due to a unit
force applied one-by-one to the various degrees of freedom of the condensed system.

1.2 A Strain-Driven Concentrated Plasticity Model

Although the classic solution method, formulated as a linear programming prob-
lem, can be used to evaluate in an extremely efficient fashion the shakedown limit
state of structures subject to dynamic loads, the plastic strains and deformations re-
main unknown. Therefore, if the inelastic deformations are required, an alternative
approach to estimate shakedown has to be explored. To this end, the algorithms
proposed in [1.2, 1.3] for estimating the shakedown multiplier under static loads
are of interest. Indeed, these algorithms are based on using a path-following algo-
rithm [1.11] which provides, as a byproduct, estimates of the plastic strains and
deformations associated with reaching the state of shakedown. Unfortunately, these
estimates are associated with a simulated load path and not the actual load path
followed by the structure in reaching shakedown. However, by first extending these
algorithms to dynamic shakedown problems, it can be observed that, under the
conditions outlined in Sec. 2.2, accurate predictions of the plastic strains and defor-
mations occurring during shakedown can be made. The first step towards this goal
is the extension of the path-following algorithms outlined in [1.2, 1.3] to dynamic
shakedown problems involving periodic and infinite duration dynamic loads.

1.2.1 Problem formulation

To formulate the dynamic shakedown problem for periodic and infinite duration
dynamic loads in terms of strains and displacements, it is convenient to first consider
a displacement increment ur together with a load multiplier s satisfying se ≤ s ≤ sp.
From ur the following strain increment can be defined [1.2]:

ϵr(ur) = Bur (1.7)

An admissible stress vector, ρ, corresponding to ur and s can be obtained through
the following return mapping scheme:

ρ(s,ur) = ρE +∆ρ, f(s,ρ) ≤ 0 (1.8)
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where ρE = ρ0+EBur is the elastic predictor of ρ, while ∆ρ = Eϵp with ϵp is the
plastic component of the strain increment ϵr defined by the Kuhn-Tucker condition:

ϵp = µn, n ∈ ∂f(s,ur), µ =

{
= 0 if f(s,ρE) < 0

≥ 0 if f(s,ρE) ≥ 0
(1.9)

with µ the plastic multiplier. Instead of estimating ρ(s,ur) by directly solving
the return mapping of Eqs. (1.8) and (1.9), ρ(s,ur) can be more conveniently esti-
mated by minimizing the Haar-Kármán function subject to the dynamic shakedown
feasibility conditions:

min
∆ρ

1

2
∆ρTE−1∆ρ

subject to

Q̄
s
= max

0≤t≤T
NTQs(t)

f = sQ̄
s
+NTρ−R ≤ 0

(1.10)

Equation (1.10) represents a standard strictly convex quadratic programming prob-
lem that can be efficiently solved in high-dimensions through standard optimization
algorithms.

By solving the return mapping scheme for a given s and ur, solutions in terms
of ρ(s,ur) will be found that satisfy the shakedown feasibility condition f(s,ρ) ≤ 0.
However, for ρ(s,ur) to be a solution to the Shakedown Theorem, then it must also
be self-equilibrated. This requirement can be imposed in terms of the internal force
vector, S, associated with the displacement field ur and assigned multiplier s as:

S(ur, s) = BTρ = 0 (1.11)

By combining this condition with the strain-driven scheme for the identification
of admissible values of ρ(s,ur), the following dynamic shakedown problem can be
stated directly in terms of the displacement increments:

sp = max s : ∃ur : S(ur, s) = 0 (1.12)

To solve Eq. (1.12), an incremental iterative scheme can be adopted based on
producing a sequence of admissible safe states that are self-equilibrated.

1.2.2 An iterative solution scheme

Starting from the elastic limit state (se,0,0), the iterative solution method estimates
the shakedown multiplier sp and the corresponding admissible self-equilibrated stress
state ρ with associated deformation vector ur by producing a sequence of admissi-
ble safe states (s(k),ρ(k),u

(k)
r ) with s(k) monotonously increasing at each step and
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convergent to sp. The overall procedure is outlined in the flowchart of Fig. 1.1. In
particular, at each step, the multiplier s and displacement field ur are initialized
through the following equations:

s1 = s(k−1) + β(s(k−1) − s(k−2))

ur1 = u
(k−1)
r + β(u

(k−1)
r − u

(k−2)
r )

(1.13)

where β is an appropriate scaling factor. The iterative process within each step pro-
duces a monotonically decreasing sequence, indexed with j, of nodal forces S(ur, s)
until the self-equilibrated condition S(urj, sj) = 0 is satisfied. To obtain this con-
dition, corrections u̇rj and ṡ for the jth iteration are defined as:{

S(urj+1, sj+1) = S(urj, sj) +Kju̇rj + yj ṡj = 0

yT
j u̇rj = 0

(1.14)

where Kj and yj are the initial tangent in (urj, sj) of the nodal force S(urj, sj),
i.e. 

Kj =
∂S(ur,s)

∂ur

∣∣∣
(urj ,sj)

yj =
∂S(ur,s)

∂s

∣∣∣
(urj ,sj)

(1.15)

To improve the efficiency of the solution process and to guarantee convergence of
the iterative scheme, Kj is taken as the elastic stiffness matrix of the system Ke,
defined once and for all at the start of the process. This allows the new estimates
to be calculated as:{

urj+1 = urj + u̇rj

sj+1 = sj + ṡj

u̇rj = −Ke
−1(Sj + ṡjyj)

ṡj = −yT
j Ke

−1Sj

yT
j Ke

−1yj

(1.16)

The solution provided at each step k satisfies the plastic admissibility and self-
equilibrium condition while the multiplier s(k) is less than or equal to sp. As such,
the solution process is terminated when s(k) = s(k−1), providing the shakedown
multiplier.

In addition to the self-stresses, ρ(k) and displacements, u
(k)
r , the solution process

can also produce estimates of the total plastic strains to occur during the shakedown
process, ϵp, through the following expression:

ϵp =
K∑
k=0

ϵ(k)p =
K∑
k=0

(Bu(k)
r −E−1ρ(k)) (1.17)

with K the total number of steps required in obtaining sp.
The plastic strains and deformations provided by this iterative scheme obviously

follow the simulated load path. In general, this load path will differ from the ac-
tual load path followed during the adaptation process under the prescribed load
history F(t; v̄y, α). However, as will be outlined in the following, under certain con-
ditions of particular practical interest, the simulated load path will provide a good
approximation of the actual load path followed by the structure under F(t; v̄y, α).
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◦ Solve 𝝆𝒋 through quadratic programming 

problem of Eq. (11)

◦ Compute nodal forces 𝑺𝑗 and initial tangent 𝒚𝑗

Initialize solution process 

k = 2, 𝒖𝒓
(0)

= 0, 𝑠(0) = 0, 𝒖𝒓
(1)

= 0, 𝑠(1) = 𝑠𝑒

𝑠1 = 𝑠(𝑘−1) + 𝛽(𝑠 𝑘−1 − 𝑠(𝑘−2))

𝒖𝒓1 = 𝒖𝒓
(𝑘−1)

+ 𝛽(𝒖𝒓
𝑘−1

− 𝒖𝒓
(𝑘−2)

)

Evaluate new estimates 𝑠𝑗+1 and 𝒖𝒓𝑗+1

Check if 𝑺𝑗 ≤ 𝑡𝑜𝑙1

Update solution

𝒖𝒓
(𝑘)

= 𝒖𝒓𝑗 , 𝑠(𝑘) = 𝑠𝑗 , 𝝆(𝑘) = 𝝆𝒋

Check if

𝑠(𝑘) − 𝑠 𝑘−1 ≤ 𝑡𝑜𝑙2

Yes

No

No

Yes, K = k

Solution to shakedown problem

𝑠𝑝 = 𝑠(𝐾), 𝒖𝒓 = 𝒖𝒓
(𝐾)

, 𝝆 = 𝝆(𝐾)

Recover total plastic strains (hinge rotations)

𝝐𝒑 = 

𝑘=0

𝐾

𝝐𝒑
(𝑘)

=

𝑖=0

𝐾

(𝑩𝒖𝒓
𝑘
− 𝑬−1𝝆(𝑘))

k = k + 1

Figure 1.1: Flowchart of the strain-based iterative dynamic shakedown algorithm.
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𝑥, 𝑢

𝑦, 𝑣

𝑧, 𝑤

𝑁𝑎 𝑥 , 𝜖𝑎(𝑥)

𝑀𝑧 𝑥 , 𝜅𝑧(𝑥)

𝑀𝑦 𝑥 , 𝜅𝑦(𝑥)

Figure 1.2: Displacements, section forces and deformations for three-dimensional beam-

column elements.

1.3 A Strain-Driven Distributed Plasticity Model

To model the distribution of plasticity along structural elements as they experience
inelasticity, a fiber-based finite element formulation is outlined in this section. To
this end, state-of-art displacement-based (DB) finite elements are first introduced
for modeling distributed plasticity. The dynamic shakedown framework is then
formulated within this setting.

1.3.1 Mechanical model

The fiber-based formulation considered in this work is based on Euler-Bernoulli
beam theory for which the displacement field of a three-dimensional (3D) element
is given by:

u(x) =
[
u(x) v(x) w(x)

]T
(1.18)

where u(x) , v(x) and w(x) are displacements in x, y and z-direction respectively,
as shown in Figure 1.2. The section deformation vector, which contains the axial
strain ϵa(x) and curvatures κz(x) and κy(x), is given by

d(x) =
[
ϵa(x) κz(x) κy(x)

]T
=

[
∂u(x)

∂x

∂2v(x)

∂x2
−∂2w(x)

∂x2

]T (1.19)

The behavior at a section is described in terms of several longitudinal fibers in
which the section has be subdivided. The geometric location of each fiber can be
fully described by the location of the centroid of the fiber area Af with respect to
a local reference system (y, z) with origin coinciding with the neutral axis of the
section, as illustrated in Figure 1.3 for a square section. From the assumption that
plane sections remain plane during the element deformation history, the fiber strains
and stresses act parallel to the neutral axis following a uniaxial relation. Hence,
the vector collecting all fiber strains over the section, ϵ(x), is related to section
deformations as follows:

ϵ(x) = l(x)d(x) (1.20)
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y

z o

(𝑦#, 𝑧#)
𝑖

Figure 1.3: Discretization of fiber section.

where l(x) is the linear section compatibility matrix defined as:

l(x) =


1 −y1 z1
1 −y2 z2
...

...
...

1 −ynf
znf

 (1.21)

with (yi, zi) the location of the ith fiber of the section and nf the total number
of fibers of the section. The corresponding fiber stresses of the section are then
obtained through the following constitutive relation:

σ(x) = Ef (x)ϵ(x) (1.22)

where Ef (x) is a diagonal matrix containing the tangent moduli of all fibers, as
follows:

Ef (x) =


Ef1 0 · · · 0
0 Ef2 · · · 0
...

...
. . .

...
0 0 · · · Efnf

 (1.23)

Within this context, the constitutive relation of the section can be derived by
integration of the fiber responses. Therefore, the section stiffness matrix ks(x),
assembled from the fiber stiffnesses, can be formulated as:

ks(x) = lT (x)Ef (x)Af (x)l(x) (1.24)

where Af (x) is a diagonal matrix collecting the areas of all fibers in the section:

Af (x) =


Af1 0 · · · 0
0 Af2 · · · 0
...

...
. . .

...
0 0 · · · Afnf

 (1.25)
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The section forces, including axial force Na(x) and bending moments Mz(x) and
My(x), corresponding to deformations d(x), are then defined through section con-
stitutive relation, as follows:

D(x) =
[
Na(x) Mz(x) My(x)

]T
= ks(x)d(x)

(1.26)

1.3.2 Displacement-based element formulation

The displacement-based (DB) stiffness method follows the standard finite element
approach, in which the displacement field of the element is expressed by the end
node displacements through appropriate interpolation functions [1.7, 1.5]. The most
commonly used functions for beam-column elements are linear Lagrangian interpo-
lation functions for the axial displacements and cubic Hermitian polynomials for the
lateral translations and rotations. The degrees of freedom at each end node are three
displacements and two rotations for a 3D beam-column element, as illustrated in
Figure 1.4. The response in torsion is assumed linearly elastic and uncoupled from
the axial and flexural response, therefore the associated displacements and forces
are omitted in the following discussion. The displacement field along the element,
u(x), can then be related to nodal displacements through the following expression:

u(x) = N̂ (x)q (1.27)

where q = [q1, q2, · · · , q10]T is the nodal displacements at the element ends in local
coordinate system while N̂ (x) is a matrix collecting the interpolation functions for
all member end degrees of freedom, defined as:

N̂(x) =N1(x) 0 0 0 0 N2(x) 0 0 0 0
0 N3(x) 0 0 N4(x) 0 N5(x) 0 0 N6(x)
0 0 N3(x) −N4(x) 0 0 0 N5(x) −N6(x) 0


(1.28)

where

N1(x) =
L− x

L
N2(x) =

x

L

N3(x) = 1− 3x2

L2
+

2x3

L3
N4(x) = x− 2x2

L
+

x3

L2

N5(x) =
3x2

L2
− 2x3

L3
N6(x) = −x2

L
+

x3

L2

(1.29)

The section deformations d(x) are then related to the element end nodal dis-
placements q, as follows:

d(x) = B̂(x)q (1.30)
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𝑧

𝐿

Figure 1.4: Element nodal forces and displacements.

where B̂(x) is the strain-deformation matrix containing the first derivative of the
axial displacement interpolation function and the second derivatives of the trans-
verse displacement interpolation functions, that is

B̂(x) =N ′
1(x) 0 0 0 0 N ′

2(x) 0 0 0 0
0 N ′′

3 (x) 0 0 N ′′
4 (x) 0 N ′′

5 (x) 0 0 N ′′
6 (x)

0 0 N ′′
3 (x) −N ′′

4 (x) 0 0 0 N ′′
5 (x) −N ′′

6 (x) 0


(1.31)

Since the displacement field is approximate, several displacement-based elements
are required along the length of a member to represent the deformations. From the
principle of virtual displacements, the element force vector Q = [Q1, Q2, · · · , Q10]

T ,
i.e. nodal forces at element ends, can be expressed through equilibrium in the
following form:

Q =

∫ L

0

B̂
T
(x)D(x)dx (1.32)

with L being the length of the element. The corresponding element stiffness ma-
trix ke, defined as derivative of the element forces with respect to the element
displacements, can then be formulated in terms of section stiffness by substituting
the section force vector D(x) in Eq. (1.32) with Eq. (1.26) and (1.30), as follows:

ke =
∂Q

∂q
=

∫ L

0

B̂
T
(x)ks(x)B̂(x)dx (1.33)

To define a complete element stiffness matrix, the torsional stiffnesses, which are
assumed uncoupled from axial and flexural stiffnesses and therefore omitted in the
expression above, at the two element end nodes have to be added to the formulation
of Eq. (1.33). The elastic stiffness matrixK for the overall system are then obtained
by standard assemble over all nb elements:

K =
∑
nb

A (ke) (1.34)
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The integrals involved in the element formulation, i.e. Eqs. (1.32) and (1.33),
are evaluated numerically through a Gauss-Legendre integration scheme along the
element, which can be expressed as:

I =

∫ b

a

f(x)dx =
NIP∑
n=1

wnf(xn) (1.35)

where NIP is the number of integration points along the element while wn is the
weight for each integration point. Since Gauss quadrature is defined in a domain of
[−1, 1], a transformation of the interval a ≤ x ≤ b into −1 ≤ ξ ≤ 1 is required to
evaluate the integral. The integral is then approximated by

b− a

2

NIP∑
n=1

wn f(
b+ a

2
+

b− a

2
ξn) (1.36)

in which ξn are integration points on the abscissa. In particular in the case of
Gauss-Legendre quadrature, the n-th Gauss node, ξn, is given by the n-th root of
the NIP -th Legendre polynomials, PNIP (ξ), defined as:

PNIP (ξ) =
1

2(NIP )(NIP )!

d(NIP )

dξ(NIP )

(
ξ2 − 1

)NIP
(1.37)

The corresponding weight, wn, is given by [1.1]

wn =
2

(1− ξ2n) [P
′
NIP (ξ)]

2
(1.38)

Therefore, the DB element formulation involves both numerical integration error
due to the approximate nature of the Gauss integration scheme and the discretiza-
tion error due to the approximate nature of the displacement interpolation, which
can be reduced by increasing the number of element sub-divisions [1.9].

1.3.3 A fiber-based model

A finite element formulation that solves the dynamic shakedown problem through a
strain-driven iterative scheme was developed in Section 1.2 in terms of generalized
stress and strain, i.e. moments and rotations of plastic hinges at the element ends.
In this section, this iterative scheme is further extended to account for plasticity
distributed along the element. Two frameworks based on fiber stress and section
forces (axial forces and moments of a section along the element) are developed, as
will be discussed in the following sections.
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Problem formulation

The DB element with fiber model discussed in section 1.3.1 and 1.3.2 is adopted
here for modeling distributed plasticity. Accordingly, the strain-driven dynamic
shakedown framework has to be reformulated in terms of fiber stresses and strains
instead of the generalized stresses and strains at the member ends of Section 1.2.
Consider a structure, modeled by the fiber approach, subject to an external dynamic
load of infinite duration and the corresponding fiber stress responses σ(t), the yield
surfaces associated with the fibers can be expressed as:

φ(t) = NTσ(t)− σ̂ ≤ 0 (1.39)

where φ represents the yield function, N is the block diagonal matrix collecting
the unit external normals to the yield surfaces, which, in the case of uniaxial fiber
behavior, are positive and negative unit values for all fibers of the structure, leading
to the following Nf × 2Nf matrix:

N =


1 −1

1 −1
. . .

1 −1


Nf×2Nf

(1.40)

where Nf is the total number of fibers used in the discretization of the structure.
σ̂ is the vector collecting the yield stresses σy in both tension and compression
(indicated with subscripts T and C) of each fiber, defined as follows:

σ̂ =
[
σy1T

σy1C
σy2T

σy2C
· · · σyNfT

σyNfC

]T
1×2Nf

(1.41)

For a structure to reach the state of dynamic shakedown, i.e. the state in which a
finite field of plastic strains has formed to enable the structure to respond purely
elastically in the subsequent load history, a necessary and sufficient condition is
that there exists a finite time t∗ ≥ 0 and some arbitrary initial conditions such that
the sum of the elastic stress solution and a time-independent self-equilibrated stress
state σs lie within the elastic domain [1.10], i.e. such that the following holds:

NT
(
σE(t) + σs

)
− σ̂ ≤ 0, ∀t ≥ t∗ (1.42)

where σE(t) is the purely elastic stress response to a dynamic load history, while σs

is a time independent self stress distribution (associated with the time independent
plastic distortions enabling shakedown). In this work, the special case of a not only
infinite but also periodic load F (t) is considered, which significantly simplifies the
dynamic shakedown problem. This artificial load is obtained by assuming an exter-
nal load of duration T infinitely repeated. Under these circumstances, shakedown
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will occur if a time independent stress distribution, σs, can be found for which Eq.
(1.42) is satisfied for the steady state elastic response in [0, T ].

To formulate the dynamic shakedown problem in terms of fiber stresses and
strains, it is first convenient to consider a residual displacement increment of ur

and load multiplier s. The associated fiber strain increment ϵr, collected in a vector
over the entire structure, is related through the fiber model as:

ϵr(ur) = LB̂Tur (1.43)

where L and B̂ are respectively block-diagonal matrices collecting the section com-
patibility matrix l(x) and strain-deformation matrix B̂(x) of all sections of the
structure:

L =


l(x1) 0 · · · 0
0 l(x2) · · · 0
...

...
. . .

...
0 0 · · · l(xNIP ∗nb

)

 , B̂ =


B̂s1 0 · · · 0

0 B̂s2 · · · 0
...

...
. . .

...

0 0 · · · B̂snb

 (1.44)

where nb is the total number of elements of the discretized structure while B̂si is
the strain-deformation matrix for the ith element defined as:

B̂si =


B̂(x1)

B̂(x2)
...

B̂(xNIP )

 (1.45)

In Eq. (1.43), T = T CT A is a matrix relating residual displacements in global
coordinates to element end displacements in local coordinates, i.e. q = Tur, where
T A is the connectivity matrix while T C is the following block diagonal matrix
collecting coordinate transformation matrices for all elements:

T C =


T C1 0 · · · 0
0 T C2 · · · 0
...

...
. . .

...
0 0 · · · T Cnb

 (1.46)

where, for a 2D element in the x-y plane, T Cj
for j = 1, ..., nb reduces to the

following transformation matrix:

T Cj
=

[
RT

RT

]
,with RT =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (1.47)

with θ the rotation counter-clockwise about the z-axis. Similar transformation
matrices can be defined for 3D structures considering rotations also about x and
y-axes.
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Under the assumption of elastic perfectly plastic (EPP) material behavior, an
admissible self stress vector σs, that collects the stresses in all fibers, due to a
residual strain increment ϵr − ϵ0 can be obtained through the following return
mapping scheme:

σs = σE +∆σ = σE −Eϵp (1.48)

where E is the elastic matrix defined as the following block-diagonal matrix that
contains Ef (x) of all sections:

E =


Ef (x1) 0 · · · 0

0 Ef (x2) · · · 0
...

...
. . .

...
0 0 · · · Ef (xNIP ∗nb

)

 (1.49)

σE = σ0+E (ϵr − ϵ0) is the elastic predictor of σs with σ0 and ϵ0 the initial stress
and strain distribution while ∆σ = −Eϵp with ϵp the plastic strain, i.e. plastic
part of ϵr, governed by the associated flow rule:

ϵ̇p = Nλ̇, λ̇ ≥ 0 (1.50)

where λ̇ is the vector of plastic multipliers satisfying the following loading-unloading
condition and consistency condition:

φT λ̇ = φ̇T λ̇ = 0 (1.51)

Instead of solving σs directly through Eq. (1.48), an equivalent approach is to
solve the following Haar-Kàrmàn condition that is based on solving the standard
and strictly convex quadratic programming problem (QPP):

min
∆σ

1

2
∆σTE−1∆σ

subject to

σ̄s = max
0≤t≤T

NTσE
s (t)

ϕs = sσ̄s +NTσs − σ̂ ≤ 0

(1.52)

where σE
s (t) consists in the purely elastic fiber stress responses in [0, T ], which can

be efficiently estimated by solving the dynamic equation of motion of the system
in a modal framework with the fiber discretization described in Section 1.3.1 and
1.3.2, while σ̄s is the maximum stress demand for each yield mode of each fiber of
the system. The last condition of Eq. (1.52) ensures that the solutions in terms of
σs(ur, s) satisfy the shakedown feasibility condition ϕs ≤ 0. To further satisfy the
dynamic shakedown criterion, σs(ur, s) must also be self-equilibrated, which can be
imposed in terms of the internal force vector, S(ur, s), as follows:

S(ur, s) = T TDsQσs(ur, s) = 0 (1.53)
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where DsQ is the following block diagonal matrix collecting the matrices DsQi

transforming fiber stresses σs(ur, s) to element end forces Q for all nb elements:

DsQ =


DsQ1 0 · · · 0
0 DsQ2 · · · 0
...

...
. . .

...
0 0 · · · DsQnb

 (1.54)

For each element, indexed with i, the transformation matrixDsQi
is defined through

numerical integration as:

DsQi
=

NIP∑
n=1

Li

2
B̂

T
(xn)l

T (xn)Af (xn)wn (1.55)

By combining the self-equilibrated condition with the shakedown admissible stress
state σs(ur, s), the dynamic shakedown problem can be written in the following
form:

sp = max s : ∃ur : S(ur, s) = 0 (1.56)

Eq. (1.56) is solved by an incremental iterative scheme that produces a series of

admissible safe states (s(k),σ
(k)
s ,u

(k)
r ) that are self-equilibrated with monotonically

non-decreasing s(k), eventually converging to the shakedown multiplier sp when
s(k) = s(k−1).

It is worth mentioning that, in this formulation, the elastic matrix E is a simple
diagonal matrix, i.e. the entries outside the main diagonal are all zero. Therefore,
Eq. (1.52) that minimizes the objective function 1

2
∆σTE−1∆σ can be decoupled

and solved individually for each fiber. This particular characteristic greatly improves
the scalability of the framework and facilitates the solution process that can be easily
and efficiently applied to high-dimensional finite-element discretizations.

An iterative solution scheme

The dynamic shakedown problem described above can be solved through an iterative
scheme, as discussed in Section 1.2. It is reformulated here for the fiber-based
framework.

The iterative process starts from the elastic limit state (s(1) = se,σ
(1)
s = 0,u

(1)
r =

0), where se is the maximum amount the external loads can be amplified before
inelasticity will occur. Within each step k of the iterative process, the multiplier s
and residual displacement field ur are initialized through the following equations:

s1 = s(k−1) + β(s(k−1) − s(k−2))

ur1 = u
(k−1)
r + β(u

(k−1)
r − u

(k−2)
r )

(1.57)

with β being an appropriate scaling factor. To reach the self-equilibrated condition,
the multiplier s and residual displacement field ur are recursively updated, indexed
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with j, through the following conditions:{
urj+1 = urj + u̇rj

sj+1 = sj + ṡj

{
S(urj+1, sj+1) = S(urj, sj) +Kju̇rj + yj ṡj = 0

yT
j u̇rj = 0

(1.58)
where S(urj, sj) is estimated by Eq. (1.53) in which σs(ur, s) is solved through
Eq. (1.52) while Kj and yj are the initial tangent in (urj, sj) of the nodal force
S(urj, sj) given by 

Kj =
∂S(ur,s)

∂ur

∣∣∣
(urj ,sj)

yj =
∂S(ur,s)

∂s

∣∣∣
(urj ,sj)

(1.59)

In particular, to improve the efficiency of the solution process, Kj can be taken
as the elastic stiffness matrix of the system K, defined at the start of the process
through Eq. (1.34). In this way, the iterative process produces a sequence of
monotonically decreasing S(ur, s) until the self-equilibrated condition is satisfied in
each step k, therefore resulting in a series of self-equilibrated and admissible safe
states (s(k),σ

(k)
s ,u

(k)
r ). The solution process is then terminated when reaching a

multiplier of interest, e.g. s = 1, or through the convergence to the shakedown
multiplier sp.

1.3.4 A section-based model

The framework described in section 1.3.3 provides solutions to the dynamic shake-
down problem considering distributed plasticity in terms of fiber stress and strain.
A limitation of this approach is that it requires linear elastic-perfectly plastic (EPP)
material behavior for each fiber of the discretization. Hence, the fiber-based frame-
work cannot be immediately applied to reinforced concrete structures due to the fact
that concrete materials always exhibit a nonlinear constitutive relationship between
stress and strain due to the lack of tensile strength. In other words, at the level of
the fibers, concrete materials never exhibit linear elastic behavior. To circumvent
this issue, it is here proposed to reformulate the strain-driven solution process in
terms of section forces, e.g. section axial forces and bending moments, along the
element instead of fiber stresses. In this setting, the section forces are assumed to
follow a linear EPP behavior, allowing the application of the strain-driven iterative
scheme. Following this approach, only plasticity distributed along the element is
taken into consideration while that within the section is assumed to instantaneously
occur once an appropriate yield condition is satisfied. In this section, the necessary
reformulations of the strain-driven dynamic shakedown framework for implementing
the aforementioned the section-based approach are presented in detail.
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Problem formulation: section-level formulation

Following the strain-driven framework, the solution process commences from the
elastic limit state with an increment in residual displacement ur and load multiplier
s. Rather than relating ur to the fiber strains as in section 1.3.3, it is referred to
section residual deformations dr, i.e. axial strains and curvatures, of all sections of
the element. The kinematic equation of Eq. (1.43) then becomes:

dr(ur) = B̂Tur (1.60)

Furthermore, the time-dependent self stress of Eq. (1.48) is expressed in terms of
section forces Ds, i.e. axial force and moments of all sections, as follows:

Ds = DE +∆D = DE − ksdp

DE = D0 + ks (dr − d0)
(1.61)

where ks is the following block-diagonal matrix that contains section stiffnesses,
ks(x), of all sections:

ks =


ks(x1) 0 · · · 0

0 ks(x2) · · · 0
...

...
. . .

...
0 0 · · · ks(xNIP ∗nb

)

 (1.62)

D0 and d0 are respectively vectors of the initial section forces and deformations
while dp is the plastic section deformation vector. The corresponding element end
force vector S(ur, s) in global coordinates can be rewritten as:

S(ur, s) = T TDDQDs(ur, s) (1.63)

where DDQ is the following block diagonal matrix collecting the matrices DDQj

transforming the section forces Ds(ur, s) into element end forces Q for all elements:

DDQ =


DDQ1 0 · · · 0

0 DDQ2 · · · 0
...

...
. . .

...
0 0 · · · DDQnb

 (1.64)

For each element, the transformation matrix is once again defined through numerical
integration as:

DDQi
=

NIP∑
n=1

Li

2
B̂

T
(xn)wn (1.65)

In this context, the iterative process is carried out for estimating the inelastic
deformation of the structural system. Within each step k of the process, the time-
dependent generalized self stress, Ds, is evaluated iteratively based on ur and s
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until the self-equilibrated condition, S(ur, s) = 0, is reached. The corresponding
QPP problem of Eq. (1.52) for solving Ds is reformulated in terms of section forces
as follows:

min
∆D

1

2
∆DTk−1

s ∆D

subject to

D̄
s
= max

0≤t≤T
NTDE

s (t)

ϕs = sD̄
s
+NTDs −R ≤ 0

(1.66)

where DE
s (t) is the purely elastic section forces in [0, T ] that can be efficiently solved

by modal analysis and the DB formulation of Section 1.3.2. The block diagonal
matrix N now collects the unit external normals to the piecewise linearized yield
surfaces of each section, as follows:

N =


N s1

N s2
. . .

N sns

 (1.67)

where N si , i = 1, · · · , ns is the matrix containing external normal vectors nk of
the m linearized yield surfaces of the ith section with ns being the total number of
sections of the structure:

N si =
[
n1 n2 · · · nm

]
(1.68)

In Eq. (1.66), R defines the corresponding plastic resistances, defined as the dis-
tances from the origin to each linearized yield surface, of all sections and is given
by:

R =


Rs1

Rs2
...

Rsns

 (1.69)

where Rsi , i = 1, · · · , ns is a m×1 plastic resistance vector for the ith section whose
vector size depends on the number of linearized yield surfaces m.

An iterative solution scheme: section-level formulation

Within this context, the iterative solution scheme of section 1.3.3 is once again
adopted for solving the section-based dynamic shakedown problem. The internal
force vector S(urj, sj) in Eq. (1.58) is now calculated by Eq. (1.63) with section
force Ds(ur, s) solved through the QPP problem of Eq. (1.66). As such, the
solution process produces a sequence of self-equilibrated and admissible safe states
(s(k),D(k)

s ,u
(k)
r ) until reaching a multiplier of interest, e.g. unamplified load with

s = 1, or convergence to the shakedown multiplier sp.
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1.4 Concluding Remarks

The primary objective of the work carried outlined in this chapter was the de-
velopment of an efficient framework for estimating the inelastic responses of multi-
degree-of-freedom wind-excited building system. Both concentrated and distributed
plasticity modeling environments were introduced. Considering the behaviors of
different materials, and in particular the difficulty arising in treating concrete, two
specific distributed models were developed based on fiber stresses and section forces,
respectively. For the fiber-based framework, plasticity distributing over the section
height is further taken into consideration.
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Chapter 2

A Probabilistic Dynamic
Shakedown Framework

The primary goals of the work outlined in this chapter was:

1. Development of a framework for the probabilistic generation of any number of
wind load histories that captures not only the record-to-record variability in
the dynamic wind loads, but also the physics behind any complex aerodynamic
phenomenon, such as acrosswind wake-induced vortex shedding, captured in
wind tunnel tests.

2. Development of a stochastic simulation framework for estimating the proba-
bility of susceptibility to collapse of wind-excited structures within the setting
of state-of-the-art performance-based wind engineering frameworks [2.2] and
the dynamic shakedown models outlined in Chapter 1.

In reaching the the first goal, a data-driven simulation model is developed based
on spectral proper orthogonal decomposition (POD) [2.7, 2.8, 2.9, 2.1, 2.10]. In par-
ticular, by allowing the frequency dependent spectral eigenvalues Λj and eigenvec-
tors Ψj of the external wind loads to be estimated directly from classic wind tunnel
data, a framework is outlined that can simulate dynamic wind load traces that con-
tain any building induced aerodynamics captured in wind tunnel tests. Once the
eigenvalues Λj and eigenvectors Ψj of the external loads are known, any number of
realizations of the external load histories can be obtained using a classic spectral
representation algorithm based on the Fast Fourier Transform [2.3]. Because only
the first few eigenvalues/eigenvectors are generally necessary for accurately repre-
senting wind loads, the model is computationally extremely efficient allowing for the
generation of probabilistically consistent wind loads of long duration in a matter
of seconds. An alternative quasi-steady model is also outlined that can be used in
cases when wind tunnel data is unavailable.

In reaching the second goal, the dynamic shakedown models outlined in the
Chapter 1 are integrated with the above outlined stochastic wind load models within

23
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a stochastic simulation framework based on a Monte Carlo scheme. The efficiency
with which any given stochastic wind load history can be analyzed ensures the com-
putational feasibility of the scheme, while the possibility of estimating not only the
state of shakedown for any given load history but also the deformations at shake-
down (thanks to the models introduced in Chapter 1) enables a general definition
of system-level collapse susceptibility.

2.1 Problem Setting

The Pacific Earthquake Engineering Research (PEER) Center’s framework for performance-
based earthquake engineering [2.4, 2.5, 2.6] was recently extended to wind engineer-
ing [2.11, 2.2], where structural performance is measured in terms of the annual
exceedance probability, Pf , of decision variable thresholds, dv, estimated through
the resolution of the following probabilistic integral:

Pf (dv) =

∫∫∫∫
G(dv|dm) · |dG(dm|edp)|·

|dG(edp|ip)| · |dG(ip|im)| · p(im) · dim
(2.1)

where G(a|b) is the complementary cumulative distribution function of a conditional
on b; dm is the damage measure; edp is the engineering demand parameter, which
for structurally induced damage is generally taken as the peak structural response
over the duration of the wind event; ip represents a set of interaction parameters
(i.e. the aerodynamic loads acting on the structure); while p(im) is the probability
density function of the intensity measure im which, in the case of wind hazards, is
generally taken as the largest yearly wind speeds.

This framework applies only to buildings that are repairable, i.e. those that do
not exceed limits indicating irreparability during the wind storm. To further con-
sider both irreparable (sucetable to collapse) and repairable (safe against collapse)
scenarios, which are mutually exclusive events, the following decomposition based
on the total probability theorem can be used [2.2]:

P (DV > dv) = P (DV > dv|NC)P (NC) + P (DV > dv|C)P (C) (2.2)

where P (C) and P (NC) are the probability of collapse susceptibility and non-
collapse susceptibility, P (DV > dv|NC) is the annual exceedance probability of dv
given that the building is not susceptible to collapse, while P (DV > dv|C) is the
annual exceedance probability of dv given that the building is susceptible to collapses
during the wind event. In general, a wind-excited structure can be identified as
susceptible to collapse under two possible scenarios: (1) failure due to low cycle
fatigue (acrosswind failure) or incremental plastic collapse (alongwind failure); and
(2) failure due to excessive deformations, e.g. excessive residual displacements or
hinge rotations. In order to estimate the probability associated with the first failure
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scenario, dynamic shakedown theory can be applied to define a limit state separating
susceptibility to low cycle fatigue and/or incremental plastic collapse from a safe
state. This method, however, does not provide any information on the plastic strains
and deformations of the structure, which are essential for estimating P (DV >
dv|NC) for the second failure scenario.

To address this issue, a stochastic simulation scheme is outlined in this chapter
based on the models detailed in Chapter 1. In particular, the method is based
on simulating a non-linear load deformation path (through the path-following it-
erative schemes of Chapter 1) for each wind load history of interest. The effi-
ciency with which solutions can be found for any given load history of long duration
(hours) allows simulation methods to be directly used to estimate quantities such
as P (DV > dv|C) and/or probabilities associated with exceeding strain limits in
any inelastic response of interest.

2.2 The Proposed Framework

Sections 1.2 and 1.3 presented the solution schemes for evaluating the dynamic
shakedown limit state and the associated plastic deformations and strains of the
structure under a prescribed periodic and infinite duration load history. This solu-
tion method cannot be directly applied to wind storms due to their finite length.
Also, even for a periodic and infinite duration wind load, the simulated and ac-
tual load paths will in general differ therefore limiting the usefulness of the plastic
deformations and strains obtained from the solution scheme. However, under the
conditions stated below, these limitations can be circumvented.

2.2.1 The artificial wind storm

A solution to the finiteness of real wind storms that has been recently proposed
in [2.12, 2.2]–and used to date in this project–is to consider the wind storm of
duration T infinitely repeated, thereby creating a periodic and infinite excitation
that meets the assumptions of dynamic shakedown theory considered in this work.
This “artificial” wind storm is mathematically defined as:

F̃(t+ nT ; v̄y, α) = F(t; v̄y, α) for

{
n = 0, 1, ...,+∞
t ∈ [0, T ]

(2.3)

and is illustrated in Fig. 2.1. In particular, it should be observed that no restrictions
on the loads of the “actual” wind storm F(t; v̄y, α) have been imposed in defining
F̃(t + nT ; v̄y, α). Therefore, F(t; v̄y, α) can be stationary or non-stationary which
enables the consideration of both synoptic and non-synoptic wind events in the
proposed framework. The basic idea in defining F̃ is that now the shakedown
models of Chapter 1 can be applied to estimate whether the state of shakedown
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occurs. If so, then the structure must necessarily be safe against incremental plastic
collapse as well as low-cycle fatigue for the “actual” wind storm F(t; v̄y, α). In other
words, if the structure is safe for F̃, it must be safe for F.

2.2.2 The simulated load path

By using the iterative schemes of Chapter 1 , estimates of the plastic strains, ϵp, and
deformations, ur, will also be available. As already mentioned, the general validity
of these is unknown as the load path is simulated and will in general differ from the
actual load path. However, under the following two conditions, the simulated load
path will provide a good approximation of the actual load path:

1. The structure at t = 0 has no plastic deformations, i.e. ϵp = 0.

2. The loads F(t; v̄y, α) start at zero and end at zero, i.e. the wind storm is
simulated over its entirety.

Indeed, if there are no previous plastic deformations, then ϵp must be entirely
produced during F̃. Therefore, the simulated and actual load paths start from the
same initial conditions. Also, because F is simulated over the entirety (i.e. from
zero loads to zero loads), the structure will be in a steady state response regime
from t = 0. In other words, no initial transient phase exists that could produce
plastic strains and deformations not considered in the simulated load path which
is based on the assumption of a steady state response regime in T . Finally, it
should be observed that, under these conditions, the actual load path must be
essentially monotonic as any alternating plasticity occurring in any given period T
would be repeated indefinitely, therefore eliminating the possibility of shakedown.
This behavior is reproduced by the simulated load path, which is also monotonic.

2.2.3 Remarks

Before closing this section, it should be observed that the plastic strains and defor-
mations estimated by the proposed framework are an upper bound on the actual
plastic strains and deformations, as the real wind storm has a duration of T while
the estimated plastic strains and deformations are for F̃ that has an infinite dura-
tion. This provides a safety factor against any differences between the actual and
simulated load paths. Also, it should be observed that the need to simulate the
wind loads from zero to zero does not pose any particular difficulty. Indeed, this
condition is to ensure the absence of fictitious transient responses that would create
artificial plastic strains and deformations. Therefore, any reasonable ramp-up/down
can be used, including linear.
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Figure 2.1: Illustration of a generic component of F̃ for a wind storm of duration T .

2.3 Stochastic Wind Load Models

2.3.1 Wind tunnel driven model

In order to study the record-to-record variability in the inelastic response of the sys-
tem as well as characterize these responses probabilistically in a fully performance-
based design framework such as that outlined in Sec. 2.1, multiple wind load his-
tories are required, i.e. multiple realizations of F(t; v̄y, α) are necessary. While
multiple wind tunnel tests could be carried out, one for each F(t; v̄y, α), this fast
becomes prohibitive from a time and cost perspective, especially for frameworks
based in Monte Carlo simulation where thousands of wind records are necessary.
To overcome this, simulation models can be used, which allows any number of real-
izations of F(t; v̄y, α) to be rapidly generated.

In general, F(t; v̄y, α) may be modeled as a vector-valued stochastic process [2.1].
Classic models for simulating F are based on a quasi-steady assumption which, in
general, will not hold for high-rise structures where complex aerodynamic phenom-
ena, such as acrosswind wake-induced vortex shedding, can occur. To overcome this,
a data-driven spectral proper orthogonal decomposition (POD) model is here consid-
ered for F. In this approach, F is decomposed into N , with N the total dimension of
F, independent vector valued subprocesses and therefore as [2.7, 2.8, 2.9, 2.1, 2.10]:

F(t; v̄y, α) =
N∑
j=1

Fj(t; v̄y, α) (2.4)

with Fj(t) the jth subprocess of F(t) which can be given the following spectral
representation:

Fj(t; v̄y, α) =
K∑
k=1

2|Ψj(ωk;α)|
√

Λj(ωk; v̄y, α)∆ω × cos(ωkt+ θj(ωk) + ϑkj)

(2.5)
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where Λj is the jth frequency dependent eigenvalue of F with Ψj the corresponding
frequency dependent eigenvector, ∆ω is the frequency increment with a Nyquist
(cutoff) frequency K∆ω/2 with K the total number of discrete frequencies in the
interval [0, K∆ω], ωk = k∆ω, ϑkj are random variables with uniform distribution
in [0, 2π], while θj is a vector of complex angles with ith component given by:

θji(ωk) = tan−1

{
Im[Ψji(ωk)]

Re[Ψji(ωk)]

}
(2.6)

where Im[Ψij(ωk)] and Re[Ψij(ωk)] are the imaginary and real parts of the ith com-
ponent of the jth frequency dependent eigenvector of F.

Once the eigenvalues Λj and eigenvectors Ψj of F are known, Eq. (2.4) can be
used to simulate realizations of the vector-valued stochastic process F by simulating
independent realizations of the subprocesses using a classic spectral representation
algorithm based on the Fast Fourier Transform [2.3]. Because the subprocesses
can be generated independently, and only the first few eigenvalues/eigenvectors are
generally necessary for accurately representing wind loads, Eq. (2.6) provides a
computationally convenient representation of F. In particular, in this work, Λj and
Ψj are directly estimated from wind tunnel data therefore ensuring a full description
of the complex aerodynamic response of the building under consideration.

2.3.2 Quasi-steady model

In alternative to the data-driven model of Sec. 2.3.1, F(t; v̄y, α) can be modeled
through a quasi-steady model. This will in general provide a good approximation of
the alongwind loads but is unable to provide a general description of the acrosswind
loads. Within this setting, the nth component of F(t; v̄y, α) is described by the
following relationship:

Fn(t; v̄y, α) = ηn(α)(v̄zn + vn(t))
2 ≃ ηn(α)(v̄

2
zn + 2v̄znvn(t)), n = 1, 2 . . . , N (2.7)

where N is the number of degrees of freedom of the system and v̄zn is the mean
wind velocity at height zn and related to v̄y through the wind profile, vn(t) is the
corresponding fluctuating component of the wind speed while ηn is a coefficient
equal to 0.5ρC̄nAn, in which ρ is the air density, C̄n is a directional quasi-steady
pressure coefficient and An = hnW is the influence area of the jth degree of freedom
in the direction of the wind with W the influence width. To simulate the zero-mean
fluctuating component over the height of the building, vn(t), a target power spectral
density (PSD) function must be considered. For example:

Sn(ω) =
1

2

200

2π
v2∗

zn
v̄zn

1

[1 + 50 ωzn
2πv̄zn

]5/3
, n = 1, 2, . . . , N (2.8)

where v∗ is the shear velocity of the flow represented by:

v∗ = v10β
ka

ln(10
z0
)

(2.9)
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where ka = 0.4 is the Von Kármán’s constant and the ground roughness height.
The cross spectral density is given by:

Snk(ω) =
√

Sn(ω)Sk(ω)γnk(ω), n, k = 1, 2, . . . , N, n ̸= k (2.10)

where γnk is the coherence function between vn(t) and vk(t) defined as

γnk(∆z, ω) = exp

[
− ω

2π

Cz∆z
1
2
(v̄1 + v̄2)

]
(2.11)

where v̄1 and v̄2 are the mean wind speeds at heights z1 and z2, respectively, ∆z =
|z1 − z2| is the difference between two heights and Cz is a constant that can be set
equal to 10 for design purposes.

The N -dimensional multivariate stochastic vector process v(t) describing the
fluctuating components of the wind is then simulated through the following series
as L → ∞:

vn(t) = 2
N∑

m=1

L∑
l=1

|Hnm(ωml)|
√
∆ωcos[ ωml(t)− θnm(ωml) + ϕml],

n = 1, 2, . . . , N

(2.12)

where ϕml for m = 1, 2, · · · , N and l = 1, 2, · · · , L are sequences of independent
random phase angles uniformly distributed in [0, 2π] while ωml is given by

ωml = (l − 1)∆ω +
m

N
∆ω, l = 1, 2, . . . , N (2.13)

in which ∆ω is the sampling frequency. Hnm(ωml) is a typical element of the matrix
H(ω), defined through the following decomposition:

S(ω) = H(ω)HT∗(ω) (2.14)

where S(ω) is the cross spectral density matrix with diagonal components given by
Eq. (2.8) and off-diagonal terms given by Eq. (2.10) and (·)T∗ is the transpose of
the complex conjugate.

In Eq. (2.12), θnm(ω) is the complex angle that can be written in the following
form if the offdiagonal elements Hnm(ω) of H(ω) are written in the polar form:

θnm(ω) = tan−1 Im[Hnm(ω)]

Re[Hnm(ω)]
(2.15)

where Im and Re are respectively the imaginary and real parts of the complex
function. The period of the simulated forcing function is given by:

T =
2πN

∆ω
=

2πNL

ωup

(2.16)

where ωup is the cut-off frequency.
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2.4 The Monte Carlo Simulation Strategy

The stochastic wind load models outlined above allow the iterative solution schemes
of Chapter 1 to be used to define a Monte Carlo simulation framework that can effi-
ciently estimate the system-level probability that a wind-excited structural systems
is susceptible to collapse whose inelasticity is idealized through the concentrated
or distributed plasticity models of Chapter 1. The global safety of the structure,
defined by the probabilities P (C|v̄y) and P (NC|v̄y) = 1−P (C|v̄y), is determined by
the dynamic shakedown multiplier, sp, as well as any number of limit states placed
on inelastic responses occurring at shakedown. With this in mind, the collapse
probability of the structure can be estimated through the following expression:

P (C|v̄y, α) =
1

Ns

Ns∑
i=1

I
(i)
C (v̄y, α) (2.17)

where Ns is the total number of simulated wind events while I
(i)
C is the following

indicator function evaluated in (v̄y, α) as:

I
(i)
C =

{
1 if (s

(i)
p < 1) ∪ (u

(i)
r ≥ ũr) ∪ (û(i) ≥ ˜̂u) ∪ (ϵ

(i)
p ≥ ϵ̃p)

0 if otherwise
(2.18)

where s
(i)
p , u

(i)
r , û(i) and ϵ

(i)
p are the ith sample of the shakedown multiplier, residual

displacements, peak displacements, and plastic strains at shakedown, while ũr, ˜̂u
and ϵ̃p are user defined repairability limits set respectively on ur, û and ϵp. In

defining I
(i)
C as above, susceptibility to collapse can be defined as:

1. the inability of the structure to reach the state of dynamic shakedown;

2. excessive residual ur and/or peak û displacements/drifts at shakedown;

3. excessive plastic deformations ϵp at shakedown.

It is important to observe that any other limit state can be added to I
(i)
C without

computational consequences as the scheme is based on a Monte Carlo methods.
Also, in evaluating I

(i)
C , the peak responses at shakedown û are given by the sum of

the peak elastic response ûe and the residual response ur, i.e. as û = ûe + ur.
Similarly, the probability of the structure exiting an elastic regime can be simul-

taneously estimated as:

P (se < 1) =
1

Ns

Ns∑
i=1

I(s(i)e ) (2.19)

where I(s
(i)
e ) is the following indicator function:

I(s(i)e ) =

{
1 if s

(i)
e < 1

0 if s
(i)
p ≥ 1

(2.20)
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In addition to the above probabilities, the proposed framework can also provide
probability distributions on the plastic strains (e.g. plastic hinge rotations) and
deformations (e.g. residual displacements). Indeed, a Monte Carlo scheme provides,
as a by-product, unbiased sets of samples of all responses occurring throughout the
system. These can the be used to directly estimate distribution functions.

A flowchart of the proposed Monte Carlo scheme is shown in Fig. 2.2. In
particular, the step-by-step Monte Carlo algorithm is as follows:

1. Set the intensity of the wind storm of interest by selecting the mean wind
speed v̄y with a MRI of y years, the wind direction α, and total duration T .

2. Generate a realization of the wind loads F (t; v̄y, α) through one of the stochas-
tic wind load models of Sec. 2.3 after calibration to appropriate wind tunnel
data.

3. Perform modal direct integration using the model outlined in Sec. 1.1.2.

4. Obtain a realization of Qs(t) by extracting the elastic responses from Step 3.

5. Estimate realizations of the elastic and shakedown multipliers, se and sp, by
solving the linear programming problem of Eq. (1.1). Check if the structure
has remained elastic, i.e. se ≥ 1, or is susceptible to collapse during the wind
event, i.e. if sp < 1.

6. If the structure remains elastic, i.e. se ≥ 1, the plastic deformation is set to
be zero as the structure remains elastic.

7. If the system is susceptible to collapse, i.e. if sp < 1, the structure is identified
as irreparable and no plastic deformation estimation is needed.

8. If the structure is deemed repairable, i.e. is not susceptible to collapse, and
the structure experiences plasticity, i.e. se < 1 and sp ≥ 1, estimate residual
displacements, ur, peak responses û, and total strains, ϵp, for the unamplified
wind storm, i.e. s = 1, using the iterative methods of Chapter 1 and evaluate
Eq. (2.18).

By repeating steps 2 to 8 for Ns samples of the wind loads, the safety of the system
can be estimated probabilistically using Eq. (2.17). For structures that exit the
elastic regime, plastic deformations due to the unamplified wind storms, i.e. s = 1,
will also be evaluated, thereby providing an insight into the inelastic behavior of
the system.
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Figure 2.2: Flowchart of the overall simulation strategy.
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2.5 Concluding Remarks

The primary objective of the work outlined in this chapter was the development
of a general framework allowing the estimation of the probability associated with
the susceptibility of the structure to system-level collapse based on the strain-based
dynamic shakedown models presented in Chapter 1. Contrary to the computation-
ally intensive direct integration method that requires hours to analyze a structure
under a single wind storm, the proposed model–which combines the classic solution
method for dynamic shakedown with the iterative strain-based schemes outlined in
Chapter 1–can estimate the inelastic response for each wind storm in a matter of
seconds therefore enabling the introduction of a stochastic simulation scheme based
on robust Monte Carlo methods to be used to estimate the probabilities associated
with exceeding inelastic system-level limit states modeling the susceptibility of the
system to collapse.
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Chapter 3

Verification and Examples

The primary goals of the work carried out in this chapter were:

1. Verification of the proposed concentrated plasticity dynamic shakedown frame-
work for plastic strains and deformations through comparison with results
obtained from direct integration.

2. Validation of the simulated load path through a comprehensive statistical
study involving a full range of wind directions.

3. Application and verification of the proposed dynamic shakedown framework
for fiber elements considering distributed plasticity through comparison with
results obtained from direct integration.

4. Illustration of the Monte Carlo scheme developed in Chapter 2 on a 37 story
2D steel frame subject to both alongwind and acrosswind loads estimated
through the data-driven wind load model of Chapter 2.

To achieve the first goal, alongwind and acrosswind loads histories were simu-
lated for a 150 m steel framework using the model developed in Chapter 2. Wind
tunnel data was used to calibrated the model. Direct integration of a fully non-
linear OpenSees model was then carried out and compared to the plastic strains
and deformations estimated from the dynamic shakedown framework developed in
Chapters 1 and 2. Near perfect correspondence between the two approaches was
seen therefore verifying the proposed dynamic shakedown framework.

In reaching the second goal, non-linear responses at shakedown obtained through
direct integration were compared with those obtained from the proposed strain-
based dynamic shakedown framework. In particular, randomly selected wind load
histories over a full range of wind directions, including alongwind, acrosswind and
intermediate wind directions, were considered.

To achieve the third goal, a two-story two-bay frame subject to both alongwind
load and zero-mean wind load histories was used to illustrate the potential of the
proposed framework. Direct integration of a fiber element OpenSees steel model

36
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was carried out and compared to the plastic deformation estimated from the fiber-
element-based dynamic shakedown framework developed in Chapters 1 and 2. Near
perfect correspondence between the two approaches was seen therefore verifying
the proposed fiber-based dynamic shakedown framework. In addition, a framework
based on section forces was also demonstrated on both steel and reinforced concrete
frames subject to alongwind loads with predefined yield domains for each section.
In this case, immediate comparison with direct integration is not available since
there is no such element type available in OpenSees.

In reaching the forth goal, the 150 m steel framework developed for achieving the
first goal of this chapter was analyzed while considering 5000 randomly generated
alongwind and acrosswind wind storms within the Monte Carlo scheme of Chapter
2. To illustrate the versatility of the proposed framework, probability distributions
for a few arbitrarily chosen inelastic responses where also estimated.

3.1 Verification of the Simulated Load Path

To illustrate the validity of the simulated load path of Sec. 2.2.2, this section focuses
on the comparison of non-linear responses obtained for a 37 story wind-excited steel
frame through direct integration to those obtained from the proposed incremental
strain-based concentrated plasticity scheme. In particular, the finite element envi-
ronment OpenSees (Open System for Earthquake Engineering Simulation) was used
for carrying out the direct integration using the Newmark-Beta method.

3.1.1 Model description

The structure considered in this comparison is the 37-story six-span plane steel
frame of Fig. 3.1. The geometry consists of beam span lengths of 5 m and inter-
story heights of 6 m at ground level and 4 m for all other floors. The overall height
of the structure is 150 m. The columns are box members, while the beams are
wide flange standard W24 sections. A summary of the section sizes is reported
in Table 1. The dimensions of the box columns are defined by their center line
diameters D. The thickness of the section, t, is set to D/20. The steel composing
the frame is assumed to be elastic-perfectly plastic, and is therefore completely
described by the yield stress σy and Young’s modulus Es, which were respectively
taken as 355 MPa and 200 GPa. The mass of the structure was lumped at each
floor and calculated as as the sum of the element mass and carried mass derived
from assuming a building density of 100 kg/m3. The first two natural frequencies of
the frame were respectively f1 = 0.1873 Hz and f2 = 0.5340 Hz. Rayleigh damping
was considered, with damping ratios of the first two modes equal to 2.5%.

To evaluate the non-linear response of structure, rigid-perfectly plastic hinges
were assumed at the extremes of all elements for a total of 962 possible hinges. In
particular, in this case study, plastic hinges were purely moment based, neglecting
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Figure 3.1: Schematic of the 37 story steel frame of the case study.

Table 3.1: Section sizes of the steel frame.
Level Wide-flange Beams Box Columns (cm)

1-10 W24 × 192 D = 50
11-20 W24 × 192 D = 50
21-30 W24 × 103 D = 40
31-37 W24 × 103 D = 35

axial load effects in both the beams and columns. The yield domains associated
with plastic hinges were therefore defined by the ultimate moments of the sections,
i.e. Mu = σyZ with Z the plastic modulus of the cross section.

To model the rigid-perfectly plastic hinges in OpenSees, TwoNodeLink elements
of 1 cm length were placed at the two ends of each beam and column. The mo-
ment capacity of the hinges were defined as the ultimate moment strengths of the
section while the rotational stiffnesses were calculated based on the stiffness that
would be provided by a 1 cm segment of the original elastic beam/column element.
This ensures that the elastic response of the hinges is, for all intents and purposes,
the same as the corresponding elastic beam-column element. Similarly, the shear
and axial stiffnesses were taken so as to correspond to a 1 cm segment of elastic
beam/column element.
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3.1.2 Wind loads

The two wind directions α = 0o and α = 90o, see Fig. 3.1, were considered in
the comparison of this section. These directions corresponded to acrosswind and
alongwind loads respectively. To simulate wind load histories for these two direc-
tions, the stochastic wind load model of Sec. 2.3 was calibrated to wind tunnel data
collected on a 1/300 rigid model of the building geometry shown in Fig. 3.1. In
particular, the data was part of the Tokyo Polytechnic University’s (TPU) aerody-
namic database [3.1] and was measured considering a sampling frequency of 1000
Hz and wind speed at the building top of 11 m/s. A total of 512 pressure taps
were used for 32 s of recorded data. This data was integrated and scaled therefore
defining X, Y and torsional loads at the center of mass of each floor. For the appli-
cation here considered, 1/6 of the X direction loads were considered acting on the
moment resisting frame. These loads were used to estimate the eigenvalues Λj and
eigenvectors Ψj for the two wind directions of interest.

In calibrating Eq. (2.5), a sampling frequency of 2 Hz was considered for a cutoff
frequency of 1 Hz. Five loading modes were considered for each wind direction. To
ensure stability and accuracy when carrying out direct integration, the sampling
frequency was increased through linear interpolation to 100 Hz. The mean wind
speed at the building top was set to v̄y = 52.5 m/s, which corresponds to a MRI
of y = 700 years for the Miami region of Florida. Due to the significant effort
involved in performing direct integration, the total length of the wind storm was
set to T = 360 s. The first and last minute of the loads were linearly ramped to
ensure zero initial and final conditions. To fully capture the dynamic shakedown
phenomena, the wind loads were repeated for 15 cycles before returning to zero
for full cycle, as illustrated in Fig. 3.2. This final unloading cycle allowed for the
dynamic responses to completely damp out therefore enabling the direct estimation
of the residual displacements and plastic rotations in the hinges. These quantities
were directly compared to those obtained from the strain-based dynamic shakedown
framework developed in this work.

3.1.3 Results

The comparison was carried out for four randomly generated wind loads acting in
the alongwind and acrosswind directions, i.e. α = 90o and α = 0o. Figure 3.3 reports
the residual displacements for the four acrosswind and alongwind wind loads. As
can be seen, the residual displacements estimated through the proposed framework
are almost identical to those obtained from direct integration in both the alongwind
and acrosswind directions. Plastic strains, i.e. residual hinge rotations θr, for two
samples are shown in Fig. 3.4 and 3.5 with hinge locations shown in Fig. 3.6. Once
again, strong correspondence between the two approaches is seen. Figures 3.7 and
3.8 present the deformed shapes for a representative sample under acrosswind and
alongwind loading where plastic hinge yielding occurred mostly in the first story
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Figure 3.2: A realization of the top floor stochastic forcing function for (a) acrosswind

direction, i.e. α = 0o; (b) alongwind direction, i.e. α = 90o.
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and mid-height of the building. In particular, in these figures, plastic hinges were
depicted by circles if only one hinge was present at the joint, while in the case of
multiple hinges, e.g. hinges on more than one connecting beam or column, squares
were used. It can be observed that under the assumptions outlined in Section 2.2,
the proposed framework is capable of estimating the inelastic response in both the
alongwind and acrosswind directions with high accuracy, proving that the simulated
load path is quite comparable to the actual load path experienced by the structure.

To illustrate how the accumulation of plastic strain in the hinges is monotonically
increasing, i.e. no alternating plasticity occurs during shakedown, the moment
rotation histories of three representative plastic hinges are shown in Fig. 3.9 for
an alongwind sample, while Fig. 3.10 shows the corresponding quantities for the
acrosswind direction. In particular, the final residual moments and rotations are
marked by squares. As can be seen, for shakedown to occur, plasticity increases
monotonically for each cycle with, after several cycles of loading, an absence of
further plastic accumulation as the structure begins respond in a purely elastic
manner, i.e. the state of shakedown has been reached.

3.2 Statistical Validation of the Load Path

A comprehensive statistical study was carried out considering the 37-story frame
described in Section 3.1, and shown in Figure 3.1. The wind tunnel data informed
stochastic wind model described in Section 3.1.2 was adopted for generating the
wind load histories. The mean wind speed at the building top was set to v̄y =
52.5 m/s, which approximately corresponds to a MRI of y = 700 years for the
Miami region of Florida. To make the comparison, 200 randomly selected wind
load histories were considered. Wind directions were selected from the set α ∈
{0o, 10o, 20o, . . . , 90o} following a uniform distribution. Therefore, both alongwind
and acrosswind directions were considered as well as intermediate wind directions.

For all 200 samples, the estimation of plastic deformations by the strain-based
dynamic shakedown scheme was confirmed by the direct integration. To illustrate
this, Figure 3.11 shows the comparison between all 200 residual displacements esti-
mated from the strain-based dynamic shakedown scheme and direct integration for
the first floor, where most of the plasticity occurred in this case. In addition, com-
parison for the plastic rotations of a representative hinge with plasticity occurring
for all 200 samples (i.e. Hinge 1 as shown in Figure 3.1) is shown in Figure 3.12. As
can be seen from these figures, there is strong correspondence between the results
of the two methods. Indeed, a correlation coefficient greater than 0.99 existed in
both cases. Similar results were seen for all other responses.
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Figure 3.6: Plastic hinge locations.
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Figure 3.7: Deformed shape estimated from (a) strain-based dynamic shakedown and (b)

direct integration for a representative acrosswind sample (deformed shape amplified by

250).
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Figure 3.8: Deformed shape estimated from (a) strain-based dynamic shakedown and (b)

direct integration for a representative alongwind sample (deformed shape amplified by

50).
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3.3 Verification of the Distributed Plasticity Model

In this section, both the fiber-based and section-based framework of section 1.3.3
and 1.3.4 are illustrated on a 2D two-story two-bay frame. In particular, due to
the requirement of linear EPP materials in the fiber-based framework, only steel
frame was used for illustration of this model, while the section-based framework was
demonstrated on both steel and reinforced concrete structures. Direct integration
of an OpenSees steel fiber model was carried out and compared to the responses es-
timated from the fiber-based dynamic shakedown framework. For the section-based
framework, unfortunately, this same comparison cannot be achieved since there
is no such element that defines the interaction diagram at each section along the
member length in OpenSees. The general validity of the section-based framework,
however, can be inferred from the results of Sections 3.1 and 3.2, where concentrated
plasticity was assumed at the element ends with moment plastic hinges.

3.3.1 Steel frame

The first case study refers to the two-story two-bay frame shown in Figure 3.13.
Rigid floor diaphragms were assumed at each story of the frame. The columns are
box members, while the beams are wide flange standard W24 sections. A summary
of the section sizes is reported in Table 3.2. The dimensions of the box columns are
defined by their center line diameters D while the thickness of the section’s flanges
is set to D/20. The steel composing the frame is assumed to be elastic-perfectly
plastic, and is therefore completely described by the yield stress σy and Young’s
modulus Es, which were respectively taken as 50 ksi and 29000 ksi. A lumped mass
of 45 kips was considered at each floor in addition to the element mass (to ensure
non negligible dynamic amplification, the element mass was artificially increased by
a factor of 386). The first two natural frequencies of the frame were respectively
f1 = 0.2013 Hz and f2 = 0.6604 Hz. Rayleigh damping was considered, with
damping ratios of the first two modes equal to 1.5%.
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Figure 3.13: Two-story two-bay frame.

Table 3.2: Section sizes of the steel frame.

Section type B1 B2 C1 C2

Section size W24 × 146 W24 × 103 D = 25 (in.) D = 20 (in.)

To model the distributed plasticity along the element, DB beam-column elements
were considered with two elements for each member. Gauss-Legendre integration
scheme was adopted with 5 integration points (control sections) along the element.
External loads were defined by both static vertical point loads and the wind excita-
tion, as shown in Figure 3.13. The quasi-steady model described in the Section 2.3.2
was used for generating stochastic wind loads considering a sampling frequency of
100 Hz and mean wind speed at the building top of 165 mi/h in alongwind direc-
tion. Due to the significant effort involved in performing direct integration, the total
length of the wind storm was set to T = 600 s. The first and last two minutes of the
loads were linearly ramped to ensure zero initial and final conditions and therefore,
as outlined in Section 2.2.2, the validity of the simulated load path.

Fiber-based steel frame

To apply the fiber-based framework, each section of the steel frame is discretized
into several fibers. Under uniaxial bending and plane section assumptions, fibers
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Figure 3.14: Fiber discretization of (a) box section and (b) W-shape section.

located at the same height of the section, i.e. same y coordinates, have the same
stress-strain distribution. Therefore, each section considered in this case study was
discretized vertically into 14 fibers (2 for both flanges and 10 for web), as shown in
Figure 3.14, leading to a total of 1400 fibers for the frame.

In order to further compare the inelastic responses obtained from the pro-
posed framework and those from direct integration, the steel frame was modeled in
OpenSees using the DB element “dispBeamColumn” with 5-point Gauss-Legendre
integration scheme. The nonlinear responses are integrated by the Newmark-Beta
method with α = 0.5 and β = 0.25 considering the limit load condition, i.e. exter-
nal wind excitation multiplied by the shakedown multiplier sp. To fully capture the
dynamic shakedown phenomena, the wind loads were repeated for 15 cycles before
returning to zero for a full cycle, as illustrated in Figure 3.15(a). This final unloading
cycle allowed for the dynamic responses to completely damp out therefore enabling
the direct estimation of the residual displacements and plasticity distributed along
the element.

Given the set up described above, the fiber-based dynamic shakedown framework
was applied yielding a shakedown multiplier of sp = 2.1817. Table 3.3 reports the
corresponding residual displacements at shakedown estimated by both the proposed
framework and direct integration, including horizontal displacements at the first and
second floor, i.e. u1 and u2, as well as the vertical displacements vi and rotations
ϕi at node i. The location of each node is shown in Figure 3.13. As can be seen
from Table 3.3, responses obtained from both methods are almost identical. The
time-independent self-stresses, i.e. fiber stresses σ(x), along the section height,
y, obtained from the strain-driven framework are also compared with the direct
integration results, as shown in Figure 3.16 for all sections belonging to Element
1. The location of the selected element on the frame is shown in Figure 3.17.
Once again, the strain-driven framework has proved its ability to estimate inelastic
responses with remarkable accuracy.

To illustrate the distributed plasticity, Figure 3.18 shows the fiber sections as-
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Figure 3.15: The top floor stochastic wind loads for (a) alongwind excitation; (b) zero-

mean loads.
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Table 3.3: Comparison between the shakedown residual displacements obtained from

proposed fiber-based strain-driven framework and direct integration of the steel frame

under alongwind loads.

DOF u1 u2 v2 ϕ2 v3 ϕ3 v5
Strain-driven framework 0.4721 1.4335 -0.0017 -0.0036 -0.0030 -0.0047 -0.0027
Direct integration 0.4770 1.4438 -0.0017 -0.0036 -0.0029 -0.0047 -0.0030

DOF ϕ5 v6 ϕ6 v8 ϕ8 v9 ϕ9

Strain-driven framework -0.0035 -0.0049 -0.0029 -0.0008 -0.0035 -0.0016 -0.0045
Direct integration -0.0035 -0.0054 -0.0029 -0.0012 -0.0035 -0.0020 -0.0046

sumed along the length of Element 1, i.e. 5 integration points, where fibers expe-
riencing inelasticity are filled in with red. In addition, plasticity distributed along
section height can also be obtained from the fiber-based framework. It can be ob-
served that the plasticity distributes through the second section along the member
with more fibers plastified in Section 1 than in Section 2 as the bottom of a column
usually experiences a larger bending moment than the top. The last three sections
of the selected member, as shown in the figure, remain elastic during the excitation,
therefore no plastic deformations occur.

In addition, the fiber-based strain-driven framework was also applied to the
same frame subject to zero-mean stochastic loads, as illustrated in Figure 3.15(b).
In this case the dynamic shakedown framework yields a shakedown multiplier of sp =
2.1817. The shakedown residual displacement comparison between the strain-driven
framework and direct integration is reported in Table 3.4. As in the alongwind case,
the two methods yield similar results, illustrating the immediate applicability of the
proposed framework to zero-mean stochastic loads. This strong correspondence can
also be observed in the residual fiber stresses distributed along the section, as shown
in Figure 3.19 for all sections of the first floor beam (Element 13). The distributed
plasticity, illustrated by fibers with plastic deformation, is shown in Figure 3.20
for the same Element. As can be seen, fibers in the flanges of Section 1 undergo
inelastic deformations, illustrating that maximum moment in general occurs at the
extremes of a section. Furthermore, the end sections of elements between two
supports experience the largest forces and undergo the largest inelastic excursions.
As a consequence, plasticities occur only in Section 1 (the left end of the beam
element) of the selected element while fibers in all other sections remain elastic.

Section-based steel frame

In addition to the fiber-based strain-driven framework, the same steel frame of
Figure 3.13 was used to illustrate the application of section-based framework. Prior
to carrying out the analysis, the yield domain associated with each section was
identified first. The yield domain of Figure 3.21 is considered for a steel box section
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Figure 3.16: Comparison between the fiber self-stresses obtained from fiber-based strain-

driven method and direct integration of Element 1 of the steel frame subject to alongwind

loads for: (a) Section 1; (b) Section 2; (c) Section 3; (d) Section 4 and (e) Section 5.
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Figure 3.18: Plasticity distributed along Element 1 of the steel frame under alongwind

loads obtained from the fiber-based framework.
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Figure 3.19: Comparison between the fiber self-stresses obtained from the fiber-based

strain-driven method and direct integration for Element 13 of the steel frame subject to

zero-mean loads: (a) Section 1; (b) Section 2; (c) Section 3; (d) Section 4 and (e) Section

5.
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Table 3.4: Comparison between the shakedown residual displacements obtained from

proposed fiber-based strain-driven framework and direct integration of the steel frame

under zero-mean loads.

DOF u1 u2 v2 ϕ2 v3 ϕ3 v5
Strain-driven framework 0.0104 0.0275 -0.0013 -0.0001 -0.0023 -0.0001 -0.0028
Direct integration 0.0106 0.0281 -0.0013 -0.0001 -0.0023 -0.0001 -0.0028

DOF ϕ5 v6 ϕ6 v8 ϕ8 v9 ϕ9

Strain-driven framework -0.0001 -0.0050 0 -0.0012 -0.0001 -0.0022 0
Direct integration -0.0001 -0.0050 0 -0.0012 -0.0001 -0.0022 0
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5

Figure 3.20: Plasticity distributed along Element 13 of the steel frame under zero-mean

loads obtained from the fiber-based framework.
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Figure 3.21: Piecewise linear failure domain of steel box columns.

Table 3.5: The axial and bending strengths for all sections of the steel frame.

Section Type B1 B2 C1 C2

Ny (kip) - - 6250 4000
My (k-in.) 2.09 × 104 1.40 × 104 5.86 × 104 3.00 × 104

with My = σyZ and Ny = σyA being the moment and axial strength respectively,
where A and Z are the area and the plastic section modulus of the relevant cross
section [3.2]. For a beam section, the yield domain is defined by bending strength
My = σyZ alone. A summary of the strength of all sections is given in Table 3.5.

Given the set up described above, the section-based framework of Section 1.3.4
was applied yielding a shakedown multiplier of sp = 2.4295, which is larger than the
one estimated through the fiber-based framework. The reason behind this is due to
the difference between the definition of the yield surface for the two methods. The
yield surface for a section is defined as the ultimate strength that the entire cross
section can reached in yielding, while that for a fiber-based framework is taken as
yielding of any fiber of a section, which in general occurs at the extreme fibers and
spreads over the height of the section. The shakedown residual displacements are
reported in Table 3.6, which are also greater than the fiber-based results given the
larger multiplier.

Figure 3.22 shows the plasticity distributed along Element 1 with 5 integration
points along member length marked in dashed line. In this case, plasticity is identi-
fied by sections experiencing plastic deformations. The whole section is considered
yielding at the same time since there is no information about the fiber strains and
plasticity distributed along section height. Based on the assumption of linear curva-
ture and constant axial strain along the element from the interpolation function of
Eq. (1.31), plastic deformations between integration points can also be evaluated.
For Element 1, plasticity occurs from the bottom of the column to about two-thirds
the distance between sections 2 and 3, which coincides with the fiber-based results.
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Table 3.6: The shakedown residual displacements obtained from proposed section-based

strain-driven framework of the steel frame under alongwind loads.

DOF u1 u2 v2 ϕ2 v3 ϕ3 v5
Strain-driven framework 0.9994 2.8374 -0.0037 -0.0067 -0.0053 -0.0090 -0.0027

DOF ϕ5 v6 ϕ6 v8 ϕ8 v9 ϕ9

Strain-driven framework -0.0066 -0.0049 -0.0057 -0.0012 -0.0067 0.0007 -0.0088
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Figure 3.22: Plasticity distributed along Element 1 of the steel frame under alongwind

loads obtained from the section-based framework.

3.3.2 Reinforced concrete frame

The second case study refers to a reinforced concrete frame of the same geometry as
Figure 3.13. All elements of the frame consist of rectangular reinforcement concrete
sections. A summary of the section sizes is reported in Figure 3.23. The yield stress
of the concrete, f ′

c, is taken as 4000 psi. Considering a concrete with a density of
145 lb/ft3, the modulus of elasticity can be defined as:

Ec = 57, 000
√

f ′
c psi (3.1)

The reinforcing steel is considered to have a yield stress of 60 ksi and Youngs
modulus, Es, of 29000 ksi. A lumped mass of 15 kips was considered at each
floor in addition to the element mass (as before, to ensure non negligible dynamic
amplification, the element mass was artificially increased by a factor of 386). The
first two natural frequencies of the frame were respectively f1 = 0.1562 Hz and
f2 = 0.4811 Hz. Rayleigh damping was considered, with damping ratios of the
first two modes equal to 3%. The wind loads were simulated from the quasi-steady
model with mean wind speed at the building top of 165 mi/h in alongwind direction
and sampling frequency of 100 Hz. The total duration of the external wind load was
again limited to 10 minutes with the first and last two minutes linearly ramped.

In defining the finite element model, fiber sections with tangent modulus of Ec

were used to model the elastic response of the frame. Each section of the frame was
discretized into 20 fibers in the y-direction, as illustrated in Figure 3.24, leading to
a total of 2000 fibers. The section stiffness matrix ks was then assembled from this
fiber discretization through Eq. (1.24). To account for the reduction in stiffness
after concrete cracking, the moment of inertia of a cracked section Icr is generally
used to compute the structural responses. In calculating Icr, the concrete that is
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Figure 3.23: Section sizes composing the reinforced concrete frame.

Figure 3.24: Fiber discretization of the rectangular elastic reinforced concrete section.

stressed in tension is assumed cracked, therefore effectively absent. The transformed
section then consists of n = Es/Ec times the steel area in tension and (n− 1) times
the steel area in compression. In the fiber element formulation, however, moment of
inertia is not explicitly used in defining section stiffnesses ks(x). Instead, a factor,
Ir, relating the cracked and uncracked moment of inertia is applied to the bending
related terms in section stiffness matrix, as follows;

Ir =
Icr
Ig

(3.2)

with Ig the moment of inertia of the gross concrete section.
To avoid the problem of concrete nonlinear behavior, section-based strain-driven

framework was applied to model plasticity distributed along the DB beam-column
elements with 5-point Gauss-Legendre integration scheme. Similar to the steel case,
each member was broken into two elements for better accuracy.

In general, the yield domain of a reinforced concrete beam element is completely
defined by the bending capacity of the section Mn while a P-M interaction diagram
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Table 3.7: Bending strength for beam elements of the reinforced concrete frame.
RC Section type B1 B2

Mn (k-in.) 9.553 × 103 7.707 × 103

Table 3.8: The shakedown residual displacements obtained from the proposed section-

based strain-driven framework of the reinforced concrete frame under alongwind loads.

DOF u1 u2 v2 ϕ2 v3 ϕ3 v5
Strain-driven framework 0.2215 0.5123 -0.0015 -0.0018 -0.0019 -0.0007 -0.0022

DOF ϕ5 v6 ϕ6 v8 ϕ8 v9 ϕ9

Strain-driven framework -0.0019 -0.0038 -0.0004 -0.0006 -0.0018 0.0016 -0.0006

has to be defined for the column considering the interaction between axial loads, P ,
and bending, M . The six characteristic points defining the interaction diagram are
as follows [3.3]:

1. the case of centric axial compression with a strain of 0.003,

2. the case of incipient cracking, in which the compressive failure of concrete is
reached on one face while the other has zero strain;

3. the balanced condition, in which the compression failure of concrete is reached
simultaneously with tensile yielding of steel bars at the tensile face;

4. the limiting tension-controlled condition, in which the compression failure of
concrete is reached simultaneously with tensile strain of -0.005 in the rein-
forcement layer nearest to the tensile face;

5. the case of pure bending, P = 0;

6. the case of centric axial tension, in which a uniform tensile strain of −ϵy =
0.002 is reached in the steel with the concrete cracked.

The piece-wise linear yield domains associated with the two column sections are
shown in Figure 3.25. The yield domains for the beam sections B1 and B2, on the
other hand, are defined by their bending strength Mn, as given in Table 3.3.2.

In this case, the dynamic shakedown framework yields a shakedown multiplier of
sp = 1.2879 with the corresponding shakedown residual displacements, as given in
Table 3.8. To illustrate plasticity distributed along the element, Figure 3.26 shows
plasticity along the first floor beam (Element 13) based on section deformations at
the integration points and the interpolation function. As can be seen, nearly half of
the element undergoes inelastic deformation. Similar information can be obtained
for all other elements.
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Figure 3.25: Piece-wise linear yield domains of: (a) Column C1; (b) Column C2.
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Figure 3.26: Plasticity distributed along Element 13 of the reinforced concrete frame

under alongwind loads obtained from the section-based framework.
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3.4 Example of the Monte Carlo Scheme

3.4.1 Description

In this section, the probabilistic framework of Sec. 2.2 is illustrated on the steel
frame of Fig. 3.1. In addition to the horizontal loads, vertical dead loads due to
the self weight of the elements as well as a super dead load of 23.5 kN/m were
considered. Wind load histories of total length T = 3600 s were considered acting
down the alongwind direction, α = 90◦, and acrosswind direction, α = 0◦, for mean
wind speeds at the building top of v̄y = 52.5 m/s (approximately 700 year MRI for
Miami) and v̄y = 56.5 m/s (approximately 1700 year MRI for Miami). To estimate
the steady state elastic response of the system, Qs(t), the first five modes were
considered in the modal analysis with damping ratios of 2.5%.

As described in Section 2.4, the classic solution method is first employed to
identify whether the structure remains elastic or is susceptible to collapse due to
non-shakedown. To estimate the plastic deformations for the non-collapse scenarios,
the iterative algorithm of Sec. 1.2.2 is continued until a load multiplier of s = 1
(i.e. estimates of the plastic deformations and strains under the unamplified loads
are considered).

3.4.2 Results

The analyses were carried out for Ns = 5000 simulations in both the alongwind and
acrosswind directions for the two intensity levels. Under the wind speed v̄y = 52.5
m/s of MRI 700 years, 98.6% of acrosswind responses remained elastic, i.e. se ≥ 1,
while 17.9% of alongwind responses remained elastic and 8.9% were susceptible to
collapse, i.e. sp < 1. For the non-collapse samples that went beyond the elastic
limit, upper bounds on the peak responses were estimated as outlined in Sec.2.4,
i.e. as û = ûe + ur. Figure 3.27 presents the probability of exceedance associated
with the upper and lower bounds (purely elastic response) of the peak displacement
responses at three different floor levels. As can be seen, the difference between the
two curves were more significant at lower levels due to the fact that most plastic
hinge rotations occurred in the first story while the other floors remained mainly
elastic (see the typical deformed configurations of Figs. 3.7 and 3.8). For example,
the peak response with 50% exceedance probability at the 1st floor is bounded by
0.06 and 0.064 m while that of the 37th floor is between 1.528 and 1.534 m.

Figure 3.28 shows the probability of exceedance associated with the residual
displacements associated with non-collapse samples that experienced plastic defor-
mation, i.e. non-collapse samples excluding those in which the structure remained
elastic. Plastic deformations in the members, e.g. plastic hinge rotations, can also
be estimated by the proposed framework, as shown in Fig. 3.29 for two represen-
tative hinges at the bottom of the exterior and middle columns of the first story.
In particular, it can be seen that around 45% of Hinge 1 responses, θ1, remained
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Figure 3.27: Bounds on the probability of exceedance of the alongwind (MRI = 700 years)

peak displacement responses at (a) Floor 1 (b) Floor 20 and (c) Floor 37.
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Figure 3.28: Probability of exceedance of the residual displacements at Floor 1, 20 and

37 in the alongwind direction with MRI = 700 years.

elastic, i.e. no plastic hinge rotations occurred, even though the structure exited
the elastic limit, while plastic rotations occurred in Hinge 223 for all non-collapse
inelastic samples.

For a larger wind storm with MRI of 1700 years, 98.7% samples were susceptible
to collapse in the alongwind direction, i.e. sp < 1, while 36.9% were susceptible to
collapse in the acrosswind direction with 43.8% remaining purely elastic. Figure 3.30
reports the exceedance probability associated with the upper and lower bounds of
the peak displacement responses at three different floor levels. Similarly to what
was seen in the alongwind direction, larger differences between the bounds can be
observed at the lower levels. Indeed, residual displacements at higher floors were
negligible as compared to the elastic responses. Figure 3.31 reports the probability of
exceedance associated with the residual displacements associated with non-collapse
samples in which the structure sustained plasticity. As can be seen, around 52% of
the residual displacements at the first floor were negligible. This was due to how, for
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Figure 3.29: Probability of exceedance of the residual hinge rotations for Hinge 1 and

Hinge 223 in the alongwind direction with MRI = 700 years.
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Figure 3.30: Probability of exceedance of the residual displacements at Floor 1, 20 and

37 in the acrosswind direction with MRI = 1700 years.

52% of the wind storms, the majority of the plastic hinges formed in stories other
than the first. The probability of exceedance of plastic hinge rotations associated
with hinges 263 and 223 for non-collapse samples with plasticity are presented in
Fig. 3.32. It can be observed that 43% of Hinge 263 responses, located at the 21st

story, remained elastic while more than 60% of Hinge 223 responses were elastic,
which illustrates how greater levels of plasticity occurred in higher stories under the
acrosswind loads as compared to alongwind loads.
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Figure 3.31: Probability of exceedance of the residual displacements at Floor 1, 20 and

37 in the acrosswind direction with MRI = 1700 years.
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Figure 3.32: Probability of exceedance of the residual hinge rotations for Hinge 263 and

Hinge 223 in the acrosswind direction with MRI = 1700 years.
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3.5 Concluding Remarks

The primary objective of the work outlined in this chapter was the validation of the
framework outlined in Chapter 2. To this end, a suite of concrete and steel struc-
tures were developed and solved through both the approach of Chapter 2 as well
as through the implementation of direct integration methods. Near perfect corre-
spondence between the proposed approach and direct integration provided an initial
validation of the proposed concentrated and distributed shakedown models within
the probabilistic setting of Chapter 2. An example was also presented of the Monte
Carlo simulation strategy of section 2.4 while considering wind tunnel informed
stochastic wind loads. This example clearly illustrated both the efficiency of the
proposed approach as well as the wide variety of probabilistic output parameters
provided by the scheme.
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Chapter 4

Case Study: Rainier Square Tower

The primary goals of the work carried out in this chapter were:

1. Development and verification of a three-dimensional dynamic finite element
model of the Rainier Square Tower.

2. Application of the section-based distributed plasticity dynamic shakedown
framework to the 3D model of the Rainier Square Tower.

3. Inelastic performance assessment within the context of the system-level col-
lapse susceptibility framework developed in Chapter 2.

In reaching the first goal, a three-dimensional finite element model of the Rainier
Square Tower was developed in OpenSees. Displacement-based (DB) beam column
elements were adopted with five integration points along each element. Walls were
modeled by DB beam column elements. The width of the walls was modeled through
rigid link elements connected to the axis of each wall element. Superimposed dead
loads were considered in addition to the self-weight of the elements and the weight
of the framing system. The deformed shape of the structure was verified with unit
loads in both globalX- and Y -directions at the building top. For further application
to dynamic analysis, the mode shapes and natural frequencies of the 3D tower were
evaluated through modal analysis.

In reaching the second goal, the section-based dynamic shakedown framework
Chapter 1 was applied to the 3D tower. Prior to direct implementation, piecewise
linear 3D yield surfaces were defined for all sections of the structure under consid-
eration. In particular, in each reinforced concrete section, the yield domains were
modeled through 26 flat surfaces that considered interaction between the axial force
and biaxial bending, while, for steel sections, the yield surfaces suggested by the
American Institute for Steel Construction (AISC) [4.1] were considered. Further-
more, the wind tunnel informed stochastic wind load model of Section 2.3.1, which is
capable of capturing the record-to-record variability in the dynamic wind loads, was
calibrated to building specific wind tunnel data for generating sets of synthetic wind
records for the Rainier Square Tower. Dynamic shakedown analysis of the tower

69
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was then carried out considering wind loads of mean recurrence intervals (MRIs) of
300 and 700 years over a full range of wind directions, providing useful information
on not only the safety but also the plastic reserves of the structure.

To achieve the third goal, stochastic wind loads were generated for wind direc-
tions selected from the set α ∈ {10◦, 20◦, 30◦, · · · , 360◦} following a uniform distri-
bution and a MRI of 300 years. The system-level collapse susceptibility framework
developed in Chapter 2 for providing a general description of the susceptibility to
collapse, considering both non-shakedown and failure due to excessive deformations,
was then adopted along with the section-based strain-driven dynamic shakedown
framework to estimate the system-level failure probability of the 3D tower. In addi-
tion, probability distributions of residual displacements over the height of the tower
were generated together with plastic deformations for all elements of the structure.

4.1 Numerical model of Rainier Square Tower

A 3D finite element (FE) model was developed for dynamic analysis in OpenSees.
In this section, this model will be described first. This will be followed by the veri-
fication of the model through static analyses considering unit loads at the building
top, as well as dynamic analysis in the form of modal analysis.

4.1.1 Finite element model

The lateral load resisting system of the Rainier Square Tower consists of a concrete
core and an outrigger truss connected at floors 38-40 that engages six outrigger
columns. The concrete core walls are connected by coupling beams at the floor
levels, while the outrigger columns extend from the foundation to the outrigger
truss. The concrete core system is composed of three cells from the foundation to
Level 18, two cells from Level 18 to 40, and one cell from Level 40 to the roof. In
addition, the walls of the concrete core system reduce in thickness along the height
of the building at designated levels. Complete views of the building and the lateral
load resisting system are shown in Figure 4.1.

All the following analysis, i.e. shakedown analysis as well as dynamic response
analysis, will consider the FEM model of the structure fixed at Level 1 (see Figure
4.4 for an illustration of the levels). Floor levels were taken to be at the coupling
beam elevations as opposed to the indicated floor levels from the drawings (see
Model Level Elevations in Appendix A.1). Each floor was considered to act as a
rigid floor diaphragm for horizontal movements. Therefore, the floors could move
freely in the X- and Y -directions and rotate about the Z-axis (indicated with uX ,
uY and θZ respectively), giving the building a total of 177 degrees of freedom (The
core roof acts as an additional floor level, giving the structure a total of 59 floors).

Materials with linear constitutive laws were assumed for both concrete and steel
for elastic analysis. The material strengths considered are summarized in Table 4.1.
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(a) (b)
Figure 4.1: Rainier Square Tower. (a) Architectural and structural system rendering of

the building [4.4]; (b) OpenSees finite element model.

The Young’s modulus of the concrete, Ec, was calculated as follows:

Ec = 57, 000
√

f ′
c = 5098 ksi (4.1)

The shear modulus of the concrete was calculated using basic mechanics of materials
as follows, with the assumption that the Poisson’s ratio, ν, for the concrete was 0.15:

Gc =
Ec

2(1 + ν)
= 2216 ksi (4.2)

For the steel, the Young’s modulus, Es, and the shear modulus, Gs, were taken
to be 29,000 ksi and 10,900 ksi, respectively. The modulus of elasticity used for
the rigid material assigned to all rigid link connections, modeled as “twoNodeLink”
elements, was taken to be 2.32× 1010 ksi to guarantee a rigid behavior. Figure 4.2
reports the deformed shape of the 3D tower, illustrating that the rigid link elements
(the brown elements in the red dashed oval) connecting the center lines of the shear
walls to the coupling beam element (black element in the figure) were stiff enough
to model the shear wall behavior.

To implement the distributed dynamic shakedown framework, the concrete core
system was modeled using displacement-based (DB) beam-column elements with
their local x-axis oriented in the vertical direction of the building. All elements were
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Table 4.1: Summary of material properties.

Material Strength

Structural steel (wide flange) Fy = 50 ksi
Concrete (shear walls and mega-columns) f ′

c = 8 ksi
Reinforcing steel fy = 60 ksi

Figure 4.2: Illustration of the deformed shape with rigid link elements.
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Figure 4.3: Location of the five integration points along a typical DB element.

Table 4.2: Summary of superimposed dead loading.

Use Superimposed Dead Loading

Corridors and Stairs (within core) 15 psf
Level 2 to 38 and Level 59 10 psf
Level 39 to 58 30 psf
Level 60 25 psf

modeled with five integration points along their local x-axis and utilize a Gauss-
Legendre integration scheme, as illustrated in Figure 4.3. To maintain continuity
across all elements along the height of the building, adjacent wall elements were
connected at each floor using two-node rigid link connections. The coupling beams,
outrigger truss members, and outrigger columns were also modeled using DB beam-
column elements with five integration points along their local x-axis, and utilizing
Gauss-Legendre integration. All coupling beams were connected to adjacent wall
elements using two node rigid link connections.

In addition to the mass of all elements and the framing system, which con-
sists of 2-1/2 inches of normal-weight (145 pounds per cubic foot) concrete over
3-inch ribbed steel decking (490 pounds per cubic foot), additional lumped mass
equal to the superimposed dead loads, summarized in Table 4.2, was applied at the
mass node, taken to be located at the geometric center of each floor. Rigid floor
diaphragms were then incorporated utilizing the Rigid Diaphragm multiple con-
straints function in OpenSees with the mass node assigned as the master node at
each floor and all other nodes of the corresponding floor (outrigger column nodes in-
cluded) assigned as slave nodes. The X- and Y -displacements of the slave nodes can
then be defined in terms of the master node by the following kinematic relationship:

uX1

uY 1
...

uXns

uY ns


=


1 0 −(Y1 − YM)
0 1 (X1 −XM)

...
1 0 −(Yns − YM)
0 1 (Xns −XM)



uXM

uXM

θZM

 (4.3)

where Xi, Yi, XM and YM are the X- and Y -coordinates of the slave nodes and
master node while ns is the number of slave nodes on the rigid diaphragm. This
transformation was applied to the degrees of freedom of each floor.
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4.1.2 Verification of the FE model

Static analysis

Before carrying out dynamic analysis, the 3D FE model was first verified with static
loads at the building top. A unit load was applied to the master node of the top
floor in both global X- and Y -directions. The structure deformed as expected under
these loads, as shown in Figure 4.4 with amplification for illustration purpose.

X
Y

𝐹𝑋
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P6

X

Z

L40

L20

(a)

X
Y

Y

Z

𝐹𝑌

𝐹𝑌

L40

L20

L01

P6

(b)
Figure 4.4: Deformed shapes of the FE model subject to unit loads at the top floor in (a)

X-direction and (b) Y -direction.

In applying the dynamic shakedown approach, the structure under gravity load-
ing, including self-weight of the structure and the superimposed dead load, is consid-
ered as the initial safe state, where the strain-driven iterative approach starts from,
before applying the wind loads. Therefore, the initial generalized stress state as well
as the initial displacements due to gravity loading have to be estimated through
static analysis prior to the implementation of the dynamic shakedown framework.

Modal analysis

Given the set-up described in Section 4.1.1, modal analysis was carried out yielding
the first five natural periods as provided in Table 4.3. The first two modes were
respectively in global X- and Y -direction while the rotational mode about global Z-
axis was the fifth mode, which could be due to an underestimation of the rotational
mass at each floor. The mode shapes are shown in Figure 4.5.
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Table 4.3: Natural periods of the FEM model fixed at level 01.

Mode 1st 2nd 3rd 4th 5th

Period (s) 6.05 5.71 1.80 1.64 1.28

(a)  !"# (b) $%& (c) '(& (d) )#* (e) +#*

Figure 4.5: The first five mode shapes of the FEM model.

4.2 Dynamic shakedown of Rainier Square Tower

In this section, the section-based distributed plasticity dynamic shakedown frame-
work is applied to the 3D tower of Section 4.1. The 3D piecewise linear yield surfaces
for all sections of the structure under consideration will be defined first, followed by
the wind load model for generating wind tunnel informed synthetic wind records to
be applied to the 3D structure.

4.2.1 Piecewise linearization of the yield surface

The implementation of the dynamic shakedown analysis requires the yield surfaces
to be defined for each section along the beam-column elements of the structure
under consideration. Assuming local y and z axes in the principal directions of the
section, as illustrated in Figure 4.6, the yield surface is defined as the interaction
domain between the axial load P and the biaxial bending My, Mz based on the
following assumptions [4.10]:

1. plane sections remain plane after deformation;

2. full strain compatibility exists between the steel reinforcements and the sur-
rounding concrete;
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y

z o

Figure 4.6: Reference system for a typical rectangular section.

3. elastic-perfectly plastic constitutive relation is assumed for both concrete (in
compression) and reinforcing steel. Concrete is assumed to be a zero tension
material;

4. shear and torsion failures are always prevented by the presence of appropriate
transversal reinforcements.

In this section, piecewise linear three-dimensional yield surfaces will be defined
for reinforced concrete wall and column sections, coupling beam sections, as well as
steel beam sections.

Reinforced concrete wall and mega-column sections

Both mega-columns and walls elements are designed to resist lateral wind or earth-
quake loads in addition to the gravity loads. Therefore, they are subjected to
combined axial and biaxial bending loads. A multisurface piecewise linearization
of the yield surface, as proposed in [4.8], is adopted as an approximate representa-
tion of the elastic domain of the section. Each surface is associated with a possible
collapse mechanism of the section, defined by the following plastic strain vector:

ϵp =
{
ϵp, χp

y, χp
z

}T
(4.4)

where ϵp, χp
y and χp

z are respectively the plastic axial strain and curvatures about
the local y- and z-axes of the section. The corresponding plastic resistance, R, can
be determined through the following equation:

R = max{ϵTp t : t ∈ E} (4.5)

where t = {P,My,Mz} is the generalized stresses (i.e. section forces) of the section
within the elastic domain E. The failure stresses tp associated with ϵp can then be
solved through the maximization of Eq. (4.5), as illustrated in Figure 4.7. In this
work, since the full PMM yield surface was provided, the plastic resistance R, as
well as the corresponding failure stresses tp with respect to ϵp, can be conveniently
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Figure 4.7: Linearized yield surface and the corresponding plastic resistance of a section.

estimated through the above equation by substituting t with all PMM points on
the yield surface.

Considering both the precision and computational complexity, 26 flat surfaces
are used for approximating the yield domain of the reinforced concrete column
sections. The directions for all surfaces, collected in N = [n1,n2, · · · ,n26], are
given as:

N =

1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1
0 0 1 −1 0 0 cz −cz cz −cz 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 cx cx −cx −cx

0 0 0 0 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 cz cz cz cz −cz −cz −cz −cz
cy −cy cy −cy c −c c −c −c c c −c

 (4.6)

where cx, cy and cz are defined by limit stresses corresponding to principal directions
through the following equations:

cx =
∥tp1 − tp2∥
∥tp5 − tp6∥

, cy =
∥tp3 − tp4∥
∥tp5 − tp6∥

, cz =
∥tp1 − tp2∥
∥tp3 − tp4∥

(4.7)

with tpk being the failure stresses corresponding to nk, while c is the average of cx
and cz, i.e. c = (cx+cz)/2. Based on the normality condition, the direction of the kth

yield surface can be related to the plastic strain vector through nk = ϵpk , therefore
tpk can be easily solved through Eq. (4.5). In addition, it should be noted that
this approximation provides an overestimate of the yield domain through external
tangent linearization. The errors, however, are have been shown to be relatively
small and therefore acceptable for applications to concrete sections [4.8].
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Figure 4.8: Piecewise linear failure domain of reinforced concrete coupling beams.

Reinforced concrete coupling beam sections

The axial loads P of the coupling beam elements are negligible due to the rigid
diaphragm assumption, thereby allowing the definition of the yield surface to be
completely governed by the interaction between the biaxial bending My and Mz. A
yield domain of 8 flat surfaces, as shown in Figure 4.8, is therefore considered for
a reinforced concrete beam with Mpy and Mpz the moment strengths of the section
with respect to bending around the y-axis and z-axis. In addition to these four
points in the principal directions, the failure stresses at 45◦, 135◦, 225◦ and 315◦ of
Figure 4.8 can also be determined by interpolating the full PMM yield surface data
with P = 0.

Steel beam sections

Similar to the coupling beam elements, the yield surfaces of steel beam sections are
also defined by the interaction between the biaxial bending as the axial load effects
are negligible. The AISC yield surface [4.1], as shown in Figure 4.9, is used in this
work. The equation governing the interaction between the biaxial bending when
the axial force P = 0 is:

|My|
Mpy

+
|Mz|
Mpz

= 1 (4.8)

where the moment strengths Mpy and Mpz of a steel section can be determined
through

Mpy = FyZy, Mpz = FyZz (4.9)

with Zy and Zz the plastic section moduli with respect to the y- and z-axes of the
relevant cross section.
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Figure 4.9: Piecewise linear failure domain for steel beams.

Elastic element assumption

To account for a few piers that are narrow and not pertinent to the global or local
response of the structure, inelasticity is assumed not to occur in those elements,
i.e. those elements are assumed elastic during the shakedown analysis. In addition,
there are several small adjustment elements used during the modeling of the core
walls that are used to connect the offset coupling beam to the actual floor level in the
model (e.g. element #545 between Level 10 and 11 on Grid 3). These elements are
also assumed elastic during shakedown analysis without compromising the accuracy
of overall response of the structure. A list of DB elements that are considered elastic
due to the aforementioned considerations is provided in A.2.

4.2.2 Stochastic wind loads

To enable Monte Carlo simulation for assessing failure probability, multiple realiza-
tions of the external aerodynamic loads F(t) are needed. For this application, the
data-driven spectral proper orthogonal decomposition (POD) model of Sec. 2.3.1
is implemented. F(t) is therefore decomposed into Nl independent vector-valued
subprocesses as follows [4.5, 4.6, 4.7, 4.3, 4.9]:

F(t; v̄3, α) =

Nl∑
j=1

Fj(t; v̄b, α) (4.10)

where v̄3 is the 3-s gust basic wind speed at 33 ft [4.2]; v̄b is the wind speed average
over the total event duration (related to v̄3 through a deterministic transformation,
as will be seen later); α is the wind angle measured from the true north, and Fj(t)
is the jth vector-valued subprocess, which can be estimated through the following
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spectral representation:

Fj(t; v̄3, α) =

Nf∑
k=1

|Ψj(ωk;α)|
√

2Λj(ωk; v̄3, α)∆ωk × cos(ωkt+ ϑkj + θj(ωk))

(4.11)
where Ψj(ωk) and Λj(ωk) are the jth frequency dependent eigenvector and eigen-
value of F(t), Nf is the total number of discrete frequencies considered in the inter-
val [0, Nf∆ωk] with ∆ωk representing the frequency increment that is related to the
Nyquist (cutoff) frequency through ωNyquist = Nf∆ωk/2, ωk = k∆ωk, ϑkj are inde-
pendent and uniformly distributed random variables in [0, 2π], while θj is a vector of
complex angles with the ith component given by θji(ωk) = tan−1(Im(Ψji(ωk))/Re(Ψji(ωk)).

As discussed in Sec. 2.3.1 the eigenvalues and eigenvectors of f(t) used in Eq.
(4.11) are to be estimated directly from the experimental loads obtained from the
wind tunnel tests. In particular, Λj(ωk) and Ψj(ωk) are related to the eigenvalues
and eigenvectors of the scaled experimental wind tunnel load, fw(t̃), through the
following relationships:

Λj(ωk; v̄3) =

[(
v̄3600
v̄w

)2
]2(

v̄w
v̄3600

)
Λ

(w)
j (ω̃k) (4.12)

Ψj(ωk) = Ψ
(w)
j (ω̃k) (4.13)

where v̄b = v̄3600 is the mean hourly wind speed at a full-scale reference height
that is related to the basic wind speed v̄3 of interest through a transformation of
Appendix A.3, v̄w is the mean hourly wind speed at the reference height to which
the wind tunnel loads fw(t̃) were scaled, ωk = v̄3600

v̄w
ω̃k with ω̃k the kth frequency

step at the wind tunnel reference speed, while Λ
(w)
j (ω̃) and Ψ

(w)
j (ω̃) are eigenvalues

and eigenvectors of fw(t̃) and are obtained from solving the following eigenvalue
problem:

[Sfw(ω̃k; v̄w, α)− Λ(w)(ω̃k; v̄w, α)I]Ψ
(w)(ω̃k;α) = 0 (4.14)

where Sfw is the cross power spectral density of fw(t̃). It should be highlighted

that, once Λ
(w)
j (ω̃) and Ψ

(w)
j (ω̃) are obtained through solving Eq. (4.14), they can

be scaled to other wind speeds of interest simply through Eqs. (4.12)-(4.13). This
scaling property, together with the POD scheme, which allows the subprocesses to
be generated independently using only a few spectral modes, ensures the efficiency of
the approach in generating the realizations of the stochastic wind loads process F(t).
It should be observed that, the sampling frequency, ω̃, associated with frequency
points ω̃k, is related to the wind tunnel sampling frequency at model scale through
ω̃ = 2π v̄wsws

v̄wssL
where v̄ws is the wind speed at which the wind tunnel tests were carried

out, sL is the length scale factor of the full-scaled building to the rigid model, while
sws is the sampling frequency used in the wind tunnel tests.
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Wind tunnel data for Rainier Square Tower

In generating wind load histories, the stochastic wind load model of Section 4.2.2
was calibrated to wind tunnel datasets provided by Rowan Williams Davies & Irwin
(RWDI). These data consisted in measurements made through the high-frequency
base balance (HFBB) collected on a 1:400 rigid model of the Rainier Square Tower.
In particular, the data was measured considering a sampling frequency of sws = 300
Hz for a total recorded duration of 118 s. Datasets associated with 36 wind directions
(α = {10◦, 20◦, ..., 350◦, 360◦}) were obtained, while the mean wind speeds, v̄ws, at a
60-inch height in the wind tunnel corresponding to different angles can be found in
Table A.1. These wind tunnel datasets were processed and scaled therefore defining
horizontal force time series acting in the X and Y directions, FX,j(t) and FY,j(t),
and a torsional load time series, MZ,j(t), acting at the tower’s reference center of
coordinates (0 ft, -40 ft) at each floor. These full-scaled loading time histories

were used in estimating the eigenvalues Λ
(w)
j and eigenvectors Ψ

(w)
j of Eq. (4.14),

which were related to Λj and Ψj of Eq. (4.11) through Eqs. (4.12)-(4.13). In
calibrating Eq. (4.11), a sampling frequency of 2 Hz was considered for a cutoff
frequency of 1 Hz. The first five POD spectral modes were considered in generating
stochastic wind processes in this case study. The specific transformation scheme
used in converting the basic wind speed v̄3 to the mean hourly wind speed v̄3600 is
provided in Appendix A.3. An example of the scaled experimental dynamic wind
loads and the corresponding simulated dynamic wind loads is presented in Figure
4.10. The effectiveness of the POD-based stochastic model in replicating correlation
properties of experimental loads is illustrated through the autocorrelation and cross-
correlation functions plotted in Figure 4.11 and Figure 4.12.

4.2.3 Shakedown analysis

Description

In this section, the section-based distributed plasticity dynamic shakedown frame-
work is applied to the 3D tower with piecewise linear yield surfaces as defined in
Section 4.2.1. The stochastic wind model of Section 4.2.2 was adopted for generat-
ing the wind loads at the reference point of each floor, which were then transferred
to the master node of each level. Two intensity levels were considered with 3-s gust
wind speeds v̄3 at 33 ft height of 91 and 96 mph, corresponding to MRI of 300 and
700 years respectively for Seattle. Wind load histories of total length of T = 3600 s
were considered for all wind directions from 10◦ to 360◦ in 10◦ increments in order
to provide a full description of the inelastic structural behavior of the system. In
addition to the wind loads, gravity loads including the self-weight of the structure
and the superimposed dead loads were considered in the analyses. To estimate the
steady state elastic response of the system, the first five modes were considered in
the modal analysis with damping ratios of 5%.

The linear programming (LP) solution method is first employed to identify
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Figure 4.10: Experimental loads and a realization of the Level 40 stochastic wind loads

for: FX,40(t), FY,40(t), and MZ,40(t) associated with v̄3 = 103 mph and α = 330◦.
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Figure 4.11: Autocorrelation of experimental loads and simulated wind loads associated

with v̄3 = 103 mph and α = 330◦ for: (a) FX,40(t), (b) FY,40(t), (c) MZ,40(t).
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Figure 4.12: Cross-correlation of experimental loads and simulated wind loads associated

with v̄3 = 103 mph and α = 330◦ between: (a) FX,38(t) and FX,40(t), (b) FY,38(t) and

FY,40(t), (b) MZ,38(t) and MZ,40(t).
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whether the structure remains elastic or is susceptible to collapses due to non-
shakedown by estimating the elastic, se, and plastic multiplier, sp. This method
allows a preliminary evaluation of the structure in just a few seconds. In particular,
if se ≥ 1, the structure will remain elastic under the windstorm with no occurrence
of inelasticity. If sp ≥ 1, the structure will eventually shakedown under the wind
loads and is therefore safe against plastic fatigue failure and/or incremental plastic
collapse during the windstorm. In addition, elements where inelasticity occurs at
shakedown are also identified.

Results

The analyses were carried out for Ns = 10 simulations in all wind directions and
the two intensity levels mentioned above (i.e. 300 MRI and 700 MRI wind loads).
Table 4.4 and 4.5 report the mean and coefficient of variation (CV) of the elastic
and plastic multipliers over all simulations for all directions respectively for the
300 and 700 MRI wind loads. It is worth noting how the multipliers vary from
one direction to another, suggesting that the structure is more susceptible to wind
excitation from certain wind directions. The structure is especially sensitive to wind
loads coming from angles α between 190◦ and 280◦. Indeed, for these directions,
the elastic multipliers, se, are much smaller than those of other directions. It is of
practical interest to observe that se can be interpreted as the fraction of external
dynamic load that would be required to cause first yield somewhere in the structure.
For example, for a wind direction of 250◦ and a 700 year MRI wind speed, Table 4.5
would suggest that on average 41% of the applied load would be enough to cause
first yield somewhere in the system.

The plastic multipliers, sp, on the other hand, are larger than 1 for all wind
directions, i.e. the structure will shakedown and be safe against low cycle fatigue,
ratcheting and incremental plastic collapse. Furthermore, the plastic reserve of the
system, which allows the structure to have some inelasticity while still remaining safe
with respect to shakedown, can also be estimated by calculating the ratio between
the plastic and elastic multipliers, i.e. sp/se. As can be seen from Figure 4.13,
the plastic reserve of the system has a mean value larger than 1.5 for most wind
directions for both intensity levels, suggesting that the structure will still shakedown
even under wind loads that are multiplied by 1.5 in intensity. For those critical wind
directions, the plastic reserves are even higher with a maximum ratio of 5.1.

In addition, elements where inelasticity occurs at shakedown, i.e. s = sp, can
also be identified through the LP solution method. An average of 44 elements
(among the 1359 DB elements of the entire structure) experienced inelasticity over
all wind directions and both intensity levels. Figure 4.14 shows the number of
inelastic elements for one of the 10 simulations for each intensity level and all wind
directions. In particular, most of the inelastic elements for wind loads associated
with the critical wind directions are coupling beam elements, which also govern
the elastic limit of the structure. A list of all inelastic elements with tags for a
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Figure 4.13: Mean values of the ratios sp/se for all wind directions under (a) 300 MRI

wind loads and (b) 700 MRI wind loads.
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Figure 4.14: Number of inelastic elements for all wind directions of a representative

simulation and for (a) 300 MRI wind loads and (b) 700 MRI wind loads.

representative case of both intensity levels is provided in Appendix A.4.
It should be observed that this preliminary analysis based on the LP shakedown

approach can provide the information above in just a few seconds for each simula-
tion, and is therefore suitable for a rapid preliminary evaluation of the safety and
identification of the most critical elements of the structure.

4.3 System-level Susceptibility to Collapse

In this section, the probabilistic framework for assessing the susceptibility to system-
level collapse was adopted for the probabilistic collapse susceptibility evaluation of
the Rainier Square Tower. The uncertainties considered in this simulation-based
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Table 4.4: Mean and coefficient of variation (CV) of the elastic and plastic multipliers for

all wind directions under wind loads of 300 MRI.

Direction (◦) 10 20 30 40 50 60 70 80

se
mean 2.2139 3.2968 3.2192 3.3957 2.7409 2.4369 2.3323 2.0777
CV 0.0994 0.0367 0.0321 0.0424 0.0667 0.0576 0.0534 0.0558

sp
mean 3.4889 4.8877 4.6715 5.0696 3.7115 3.1306 3.1324 3.4390
CV 0.0514 0.0434 0.0504 0.0483 0.0739 0.0493 0.0585 0.0528

Direction (◦) 90 100 110 120 130 140 150 160

se
mean 2.0316 2.2214 2.2333 2.0267 1.8113 1.2170 0.8018 0.7454
CV 0.0287 0.0375 0.0451 0.0925 0.0669 0.1100 0.0650 0.0904

sp
mean 3.2114 3.4794 3.3347 3.2622 2.5031 1.8682 1.3751 1.3776
CV 0.0498 0.0512 0.0404 0.0707 0.0522 0.0765 0.0602 0.0638

Direction (◦) 170 180 190 200 210 220 230 240

se
mean 0.8569 0.8982 0.8228 0.6091 0.5241 0.4835 0.5601 0.5351
CV 0.0796 0.0794 0.0856 0.0815 0.0705 0.0488 0.0510 0.0643

sp
mean 1.6174 1.8207 1.8098 1.6076 1.6633 1.5579 1.6481 1.6218
CV 0.0703 0.0759 0.0787 0.0669 0.0647 0.0549 0.0684 0.0335

Direction (◦) 250 260 270 280 290 300 310 320

se
mean 0.4544 0.4959 0.5762 0.6538 0.8855 1.1657 0.9573 0.7320
CV 0.0557 0.0414 0.0202 0.0413 0.0426 0.0339 0.0676 0.1040

sp
mean 1.6406 2.2735 2.9550 3.2868 4.0674 4.5843 2.8005 1.8180
CV 0.0520 0.0672 0.0507 0.0581 0.0459 0.0389 0.0715 0.0823

Direction (◦) 330 340 350 360

se
mean 0.6480 0.7025 1.0093 1.3495
CV 0.0324 0.0703 0.0802 0.1071

sp
mean 1.6756 1.9584 2.7495 3.0003
CV 0.0421 0.0717 0.0570 0.0850

framework will be first discussed.

4.3.1 Uncertainties in the probabilistic framework

To set up the Monte Carlo simulation, it is first convenient to define all uncertainties
in both the structural system and the external loads. For the external wind loads,
record-to-record variability, wind directions and intensities are generally taken as
random variables. The wind model of Section 4.2.2 models the record-to-record
variability in the dynamic wind loads, therefore the wind load histories will be dif-
ferent even with the same wind direction and intensity for each realization. To
further take into account the wind directionality, a joint probability distribtuion
of wind direction and intensity can be adopted. In this work, however, this site
specific information is not available, therefore a non-directional wind speed is con-
sidered for all directions. To be consistent with ASCE 7-16 procedures [4.2], the
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Table 4.5: Mean and coefficient of variation (CV) of the elastic and plastic multipliers for

all wind directions under wind loads of 700 MRI.

Direction (◦) 10 20 30 40 50 60 70 80

se
mean 1.8442 3.0273 2.8507 2.9492 2.4924 2.1077 2.0567 1.8871
CV 0.1067 0.0340 0.0422 0.0496 0.0268 0.0779 0.0526 0.0373

sp
mean 2.9642 4.0645 4.0139 4.3150 3.2384 2.6539 2.6967 3.0028
CV 0.0725 0.0536 0.0591 0.0738 0.0521 0.0332 0.0848 0.0386

Direction (◦) 90 100 110 120 130 140 150 160

se
mean 1.7912 1.9240 2.0153 1.7269 1.5965 0.9956 0.7053 0.6524
CV 0.0479 0.0691 0.0427 0.0534 0.0924 0.1114 0.1064 0.1128

sp
mean 2.8011 2.9285 3.0542 2.7088 2.3315 1.5762 1.1818 1.1915
CV 0.0544 0.0624 0.0658 0.0737 0.0734 0.0700 0.0722 0.0780

Direction (◦) 170 180 190 200 210 220 230 240

se
mean 0.7406 0.8172 0.6608 0.5191 0.4483 0.4176 0.4859 0.4813
CV 0.0900 0.0730 0.0665 0.0497 0.0786 0.0722 0.0504 0.0463

sp
mean 1.4708 1.6631 1.4940 1.3793 1.3917 1.3741 1.4150 1.4836
CV 0.0881 0.0487 0.0441 0.0505 0.0326 0.0558 0.0442 0.0415

Direction (◦) 250 260 270 280 290 300 310 320

se
mean 0.4146 0.4477 0.4920 0.5892 0.8078 1.0346 0.8453 0.6250
CV 0.0439 0.0343 0.0493 0.0241 0.0384 0.0362 0.0698 0.0672

sp
mean 1.4740 2.0933 2.4487 2.9327 3.7826 4.1193 2.4703 1.5741
CV 0.0495 0.0337 0.0776 0.0458 0.0609 0.0398 0.0616 0.0893

Direction (◦) 330 340 350 360

se
mean 0.5468 0.6022 0.8695 1.2175
CV 0.1022 0.0406 0.0566 0.1057

sp
mean 1.3869 1.6339 2.3732 2.6646
CV 0.1017 0.0508 0.0332 0.0576

same 3-s gust wind speed at 33 ft v̄3, i.e. the basic wind speed, is considered for
all wind directions with directionality effects modeled as reported in Appendix A.3.
Wind direction is then selected from the set α = {10◦, 20◦, ..., 350◦, 360◦} follow-
ing a uniform distribution. The intensity of the wind is kept as constant in this
work, therefore providing estimates of probabilities on the susceptibility to collapse
that are conditional on a given intensity level (i.e. conditional on wind speeds of
prescribed MRIs). The case in which v̄3 is taken as a random variable, therefore
providing estimates of non-conditional failure probabilities, will be considered in
Chapter 5 together with uncertainties in the structural system properties, e.g. stiff-
ness and damping, and material strengths (e.g. f ′

c, fy). Indeed, the consideration
of these additional uncertainties adds some complexity to the problem as a new set
of yield domains for all sections must be generated for each new simulation which,
if carried out in a directly, would increase simulation time. In addition, for concrete
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structures, the dependency between the material strength and the stiffness of the
system (changes of Ec due to f ′

c) should also be carefully examined before direct
application. It should be observed that, consistently with previous studies, Ec and
f ′
c are considered constant throughout the structure, i.e. variability in Ec and f ′

c

from element to element is not considered.

4.3.2 Calibration the probabilistic framework

A general description of collapse susceptibility, considering both non-shakedown
and failure due to excessive plastic deformations, was defined for estimating the
conditional susceptibility to collapse probability P (C|v̄3) as follows:

1. the inability of the structure to reach the state of dynamic shakedown;

2. peak interstory drift û ≥ h/100;

3. permanent set ur ≥ h/500;

where h is the interstory height of the structure, ûr is the vector of residual interstory
drifts, while û are the peak interstory drifts at shakedown given by:

û = max
0≤t≤T

[|u(t) + ur|] (4.15)

with u(t) the purely elastic interstory drift response at shakedown.
Wind loads of total length T = 3600 s with directions randomly selected from

{10◦, 20◦, · · · , 350◦, 360◦} were simulated for a wind speed v̄3 of 91 mph (corre-
sponding to a MRI of 300 years) using the wind load model of Section 4.2.2. The
structure subjected to gravity loading was once again considered as the initial safe
state. Similarly to Section 4.2.3, the first five modes with damping ratios of 5% were
considered in the modal analysis for estimating steady state elastic responses. The
LP solution method was adopted to quickly identify whether the structure remains
elastic or is susceptible to collapse due to non-shakedown. Then, for the non-collapse
susceptible scenarios, the strain-driven framework is applied to estimate the residual
displacements and plastic deformations until a load multiplier of s = 1 is reached
(i.e. estimates of the plastic deformations for unamplified loads is achieved). The
system-level collapse susceptibility probability can then be estimated considering
the above outlined collapse susceptibility criteria.

In addition, because the framework is based on Monte Carlo simulation, direct
estimation of the probability distributions of the residual displacements, plastic
deformations (in terms of axial strain and curvatures) at each integration point of
each element, as well as peak responses of the inelastic system, is possible. For
example, the probability of the residual displacements Ur exceeding a threshold ur

under wind loads of intensity v̄3 is simply estimated as:

P (Ur > ur, SD|v̄3) = P (Ur > ur|SD, v̄3)P (SD|v̄3) (4.16)



Chapter 4 Results 90

Figure 4.15: Histogram of elastic, se, and plastic, sp, multipliers over all simulations.

Table 4.6: Probability of remaining elastic P (E|v̄3) and of collapse susceptibility P (C|v̄3)
under 300 MRI wind loads.

P (E|v̄3) P (C|v̄3)
Probability 46.9% 0%

where P (Ur > ur|SD, v̄3) is the conditional exceedance probability given shakedown
(SD) occurs under wind loads of intensity v̄3, while P (SD|v̄3) is the probability that
shakedown occurs under a wind load of intensity v̄3, i.e. P (SD|v̄3) = P (sp ≥ 1|v̄3).
Equivalent expressions hold for all other response parameters of interest, e.g. plastic
deformations and peak responses at any degree of freedom (DOF) of the system.

4.3.3 Results

The analysis was carried out for Ns = 5000 simulations. Under 300 MRI wind
loads, 46.9% of samples remained elastic while none of the 5000 samples showed
susceptibility to collapse, as summarized in Table 4.6. The deformation limits on
the peak interstory drift and permanent set were never exceeded. This can be
explained by the fact that most of the inelastic elements were coupling beams, which
cannot cause large residual deformations in the structure. Figure 4.15 reports the
histograms of both the elastic, se, and plastic, sp, multipliers over all simulations.
The mean values for the elastic and plastic multipliers are respectively 1.38 and
2.73. It can be observed that less than 50% of the samples remained elastic (i.e.
se ≥ 1) under the 300 MRI wind loads. However, owing to the plastic reserve of the
system, all of them could reach the state of dynamic shakedown (i.e. sp ≥ 1), and
therefore achieve a safe state against plastic collapse.
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Figure 4.16: Exceedance probability of residual displacements at the master nodes in the

global X-direction at (a) Level 20; (b) Level 40; (c) Core roof.
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Figure 4.17: Exceedance probability of the residual displacements at the master nodes in

the global Y -direction at (a) Level 20; (b) Level 40; (c) Core roof.

As mentioned in the previous section, this framework provides not only the
system-level collapse susceptibility probability but also the probability distribu-
tions of plastic deformations and residual displacements, which are useful for esti-
mating the non-collapse performance. Figures 4.16 to 4.18 respectively report the
exceedance probability distributions associated with the residual displacements in
the global X- and Y -directions and rotations about the Z-axis at shakedown for
Level 20, Level 40 and Core roof (indicated with i = 20, 40, 61). The response at
the master node of each floor was chosen for representation. It can be seen that
residual displacements in the Y -direction are larger than those in the X-direction,
even though both are within the deformation limits. To determine the responses at
any other point of the rigid floor diaphragm, the transformation of Eq. (4.3) can
be used.

Furthermore, exceedance probabilities can also be estimated for plastic defor-
mations, in terms of plastic axial strain and curvatures about local y- and z-axes, at
each section along the DB elements. To illustrate this, Figures 4.19 and 4.20 show
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Figure 4.18: Exceedance probability of the residual rotations around the global Z-axis at

the master nodes of (a) Level 20; (b) Level 40; (c) Core roof.

10
-7

10
-6

10
-5

10
-3

10
-2

10
-1

10
0

Figure 4.19: Exceedance probabilities of plastic curvatures at integration points 1 and 5

of element #182.

the exceedance probability distributions associated with the plastic curvatures about
the strong axis of the section, χpz, for two representative coupling beam elements.
Element #182 and #1929 (located on Grid D, Level 4 and 38) were chosen as they
were the most critical elements over all simulations, i.e. the most likely elements to
have inelasticity. In particular, for a beam element, the maximum moment response
often occurs at the ends of the element, therefore integration points (IPs) 1 and 5,
as illustrated in Figure 4.3, were selected for representation.

To illustrate the distributed plasticity, a sample with plastic multiplier sp close
to 1 was chosen. Figure 4.21 shows the plastic curvature χpz distributed along
Element #182 together with the locations of the five integration points marked
in dashed line. Based on the assumption of linear curvature and constant axial
strain along the element from the interpolation function of a DB element, plastic
deformations between integration points can also be evaluated. For the selected
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Figure 4.20: Exceedance probabilities of plastic curvatures at integration points 1 and 5

of element #1929.
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Figure 4.21: Plasticity distributed along Element #182 of the structure for a representa-

tive sample.

element, plasticity (colored in red) occurred from the two ends of the element to
around half the distance to the midpoint of the element. The residual displacements
at shakedown, in terms of urX , urY and θrZ at the mass node on each floor, of this
selected sample are also presented in Figure 4.22.

Finally, it should be noted that the simulation-based approach provided the
solutions discussed above in less than 72 hours while running the analysis on a
typical dual processor desktop machine. If a similar analysis was carried out by
direct integration for each of the Ns = 5000 windstorms of duration T = 3600
s considered in the simulation, the estimated run time would be in the order of
months.
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Figure 4.22: Residual displacements in the (a) X-direction; (b) Y -direction and (c) resid-

ual rotation about the Z-axis for a representative sample.

4.4 Concluding Remakes

The primary objective of the work was the application of the previously developed
probabilistic system-level collapse susceptibility estimation framework based on the
strain-driven dynamic shakedown algorithm to the Rainier Square Tower. In partic-
ular, considering the zero tension nature of concrete, the section-based distributed
plasticity framework was adopted for the shakedown analysis. Contrary to methods
based on direct integration (that would require days to analyze a structure of this
scale under a single windstorm of one hour duration), it was seen that the dynamic
shakedown approach was capable of estimating the inelastic responses at shakedown
for each windstorm in a matter of minutes. By simulating over a suite of windstorms,
the framework enabled the rapid identification of the critical wind directions as well
as the elements experiencing inelasticity. With respect to the Rainier Square Tower
as designed, collapse susceptibility was due exclusively to non-shakedown (i.e. de-
formation limits were not exceeded), as most of the critical elements experiencing
inelasticity were coupling beams therefore leading to small residual deformations.
Due to the significant difference between the elastic and plastic multipliers, on aver-
age the ratio between the elastic and plastic multipliers was over 1.5, the structure
is safe against plastic collapse even though the probability of remaining elastic is
less than 50 %, conditional on 300-year wind loads.
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Chapter 5

Reliability Analysis of Rainier
Square Tower

The primary goals of the work outlined in this chapter were:

1. Identification and modeling of a range of uncertainties that are consistent with
code development requirements.

2. Estimation of reliability indexes associated with inelastic system-level limit
states and “classic” elastic component-level limit states for the Rainier Square
Tower.

3. Outline a wind record selection procedure based on the results of a dynamic
shakedown analysis.

In reaching the first goal, a full range of uncertainties affecting the structural
system were defined in addition to those in the external loads described in Section
4.3.1. In particular, material properties, including yield strengths and elastic moduli
of both the concrete and steel, were taken as random variables together with the
damping capacity of the structure. As a result, the yield domain, i.e. the resistance,
of each section of each member was considered uncertain. For the external loads,
uncertainties in dead and live loads were considered in addition to the wind loads.
In modeling uncertainties in the wind excitations, randomness in wind speeds, wind
directions, and wind loading trace were considered.

To achieve the second goal, the collapse susceptibility framework, that is based
on a system-level collapse susceptibility limit state defined in terms of both non-
shakedown and failure due to excessive deformations, of Section 2.4 was adopted for
estimating the system-level reliability of the tower while considering the uncertain-
ties described above. In addition, reliability indexes associated with failure defined
as the occurrence of inelasticity in any given component, i.e. classic component-
based reliability, were estimated together with reliability indexes associated with
system-level failure modeled as the elastic failure of any component in the system,

96
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i.e. system-level collapse susceptibility in terms of classic component limit states.
These “classic” reliability indexes were compared to the reliability index obtained
from considering the proposed system-level inelastic limit state, therefore providing
insight into the differences in terms of reliability if damage is allowed at the ultimate
limit state.

With respect to the third goal, it is outlined how the results of the reliability
analysis can be directly used to identify limit sets of critical wind records to be used
in subsequent validation studies and/or nonlinear time history analysis.

5.1 Code Development Consistent Uncertainties

As discussed in Section 4.1 of last report, uncertainties in both structural system and
external loads have to be identified for estimating the reliability of a structure. In
order to compare with the target reliability provided in ASCE 7-16 [5.1], all random
variables considered in the analysis were carefully chosen so as to be compliant with
those considered in the derivation of load factors stipulated in design codes. In
particular, in this section, uncertainties in the structural system, gravity loads, and
wind loads will be discussed.

5.1.1 Uncertainties in the structural system

Uncertainties in the structural system are considered in terms of both material and
structural properties. In particular, the following parameters are taken as basic
random variables:

1. Material properties: concrete compressive strength f ′
c; reinforcing steel yield

strength fy; structural steel yield strength Fy; and Young’s modulus of steel
Es.

2. Structural properties: modal damping ratios ξ.

The corresponding statistical information and nominal values are summarized in
Table 5.1. As a consequence of the uncertainties outlined above, the Young’s mod-
ulus of the concrete, defined as Ec = 57, 000

√
f ′
c (psi), is also a random variable

due to its dependence on the concrete compressive strength.
By taking material strengths as random, the yield domain, i.e. the resistance, of

each section of any given member also becomes random. Within the setting stochas-
tic simulation, this implies the need to generate yield domains for each realization
of the material strengths.

5.1.2 Uncertainty propagation: steel beams

The linearized yield surfaces associated with sections of steel beams are completely
governed by the moment strengths Mpy and Mpz of the section. Therefore, the
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Table 5.1: Description of random variables in the structural system.

Nominal Mean
Nominal COV Distribution Reference

f ′
c 8 (ksi) 1.1 0.11 Normal [5.14]
fy 60 (ksi) 1.13 0.03 Normal [5.14]
Fy 50 (ksi) 1.1 0.06 Lognormal [5.2, 5.17]
Es 29000 (ksi) 1 0.04 Lognormal [5.2, 5.17]
ξ 2.0% 1 0.4 Lognormal [5.10, 5.11]

COV: coefficient of variation

propagation of uncertainty from the material properties to the yield domain can be
directly evaluated through:

Mpy = FyZy, Mpz = FyZz (5.1)

with Zy and Zz the plastic section moduli with respect to the y− and z−axes of
the cross section.

5.1.3 Uncertainty propagation: RC elements

In the case of reinforced concrete sections, however, the propagation of uncertainty
from the material properties to the 3D yield domains is more complex due to a lack
of explicit relationships between material properties and the 3D yield surface. To
overcome this issue, surrogate models are used as proxies of yield surfaces that are
treated as arbitrary black-box functions of the material properties. For example,
consider the plastic resistances, Rs for s = 1, ..., 26, associated with the 26 planes of
the general linearization scheme for 3D yield domains of concrete sections outlined
in Section 4.2.1. In general, these are functions of both the strength of the concrete
and reinforcing steel, i.e. Rs = gs(f

′
c, fy). Similarly, the components of the normal

vectors defining the orientation of the 26 planes are also functions of f ′
c and fy, i.e.

ns,i = gn(f
′
c, fy) with i = x, y, z. Within this context, it is of interest to construct

metamodels of how gs(f
′
c, fy) and ns,i = gn(f

′
c, fy) vary over the space of f ′

c and
fy. Among various available metamodeling approaches [5.9], ordinary Kriging [5.7]
is adopted in this work due to its versatility in representing different typologies of
functions.

Kriging metamodel

Given a set of n observed responses of g (i.e. plastic resistance or component of
the normal vector of one of the planes defining the linearization) collected in the

vector y = {g(f ′(1)
c , f

(1)
y ), · · · , g(f ′(n)

c , f
(n)
y )}T , the Kriging prediction of g at {f ′

c, fy}
is expressed as:

ĝ(f ′
c, fy) = µ̂+ΨT (f ′

c, fy)R
−1(y− 1µ̂) (5.2)
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Table 5.2: Bounds of sampling space.

Variable Lower bound Upper bound

f ′
c 5.95 ksi 11.80 ksi
fy 61.70 ksi 73.90 ksi

where µ̂ is the maximum likelihood estimator of the mean of the random field
defined by considering y the realizations of a Guassian process, Ψ is a vector of
basis functions with the ith term defined as

Ψi(f
′
c, fy) = Corr[g(f ′(i)

c , f (i)
y ), g(f ′

c, fy)] (5.3)

with Corr an appropriate correlation function, while R−1(y − 1µ̂) are the weights
assigned to each basis function with R the correlation matrix associated with the
correlation function Corr. In particular, to define Ψ and R, the following exponen-
tial correlation function was used:

Corr[g(f ′(i)
c , f (i)

y ), g(f ′(j)
c , f (j)

y )] = exp

(
−

l∑
k=1

[θ
(f ′

c)
k |f ′(i)

ck
−f ′(j)

ck
|pk(f ′c)+θ

(fy)
k |f (i)

yk
−f (j)

yk
|pk(fy)

]

)
(5.4)

where θ
(f ′

c)
k , θ

(fy)
k , pk

(f ′
c) and pk

(fy) are the parameters defining the Kriging model.
In particular, here a square exponential model is considered, i.e. pk

(f ′
c) = pk

(fy) = 2.
Based on this formulation, the maximum likelihood estimates of the mean value can
then be derived as

µ̂ =
1TR(−1)y

1TR(−1)1
(5.5)

where 1 is a n× 1 column vector of ones.
The first step towards calibrating the Kriging model g is the identification of the

sampling space. For unbounded random variables, the upper and lower bounds of
the sampling space can be defined in such a way that the confidence region spans
a space sufficiently large to contain with high probability (e.g. 99-99.9%) all real-
izations of the random variable [5.13]. In the application that follows, a confidence
interval of C = 0.9973 is selected for each random variable, which corresponds to
µ + 3σ for a Gaussian variable, as illustrated in Figure 5.1. The upper and lower
bounds for f ′

c and fy are summarized in Table 5.2 with mean and standard deviation
defined in Table 5.1.

The second step is the choice of sampling points within the sampling space in
which to calibrate the model, i.e. the choice of support points, within the identified
space of f ′

c and fy, in which to evaluate the vector y. To reduce the bias error of
the metamodel, sampling plans that attempt to evenly fill the space are generally
favored. In this work, a 20-point sampling plan was created based on optimal Latin
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Figure 5.1: Illustration of the confidence interval of a Gaussian variable.
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Figure 5.2: A 20-point sampling plan for Kriging model calibration.
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hypercube sampling [5.6], ensuring the optimal space-filling properties of the sample
points, as illustrated in Figure 5.2.

Based on the 3D yield domains evaluated at the sampling points (provided by
MKA), i.e. the observed responses y, Kriging models were created for the plas-
tic resistances, Rs for s = 1, ..., 26, and components of the normal vectors of the
planes defining the linearized yield surfaces of all reinforced concrete sections. The
calibrated models were then used to rapidly update the 3D yield domains for each
realization of f ′

c and fy considered in evaluating through stochastic simulation the
reliability of the structure.

5.1.4 Uncertainties in gravity and wind loads

Gravity loads

To carry out the reliability analysis, uncertainties in the gravity loads, including
live loads, should also be taken into account in addition to those in the wind loads.
The dead loads and live loads are respectively taken as normal and gamma ran-
dom variables with mean and coefficient of variation summarized in Table 5.3. In
particular, “arbitrary point-in-time” live load, denoted as Lapt, are considered in
reliability analysis.

Wind loads

In generating dynamic wind loads, the overall intensity is traditionally modeled
through the site specific mean wind speed VH . In general, VH is a random variable
which can be related to available meteorological data, v, collected at a meteorolog-
ical height Hmet at a nearby weather station characterized by a roughness length
z01. In this work, the following probabilistic model that explicitly accounts for the
inevitable uncertainties in transforming limited data from the meteorological site to
the building site is adopted [5.16]:

VH(T, z0) = e3(τ, T )

(
e5z0
e6z01

)e4·0.0706

·
ln
[

H
e5z0

]
ln
[
Hmet

e6z01

]e1e2v(τ,Hmet, z01) (5.6)

where VH is the site-specific wind speed at a height of interest H (e.g. building
height) averaged over a fixed interval T (e.g. an hour), v is the corresponding wind
speed at the meteorological station averaged over a period τ , z0 is the site specific
roughness length, e1 and e2 are random variables characterizing the inevitable ob-
servational and sampling errors in v; e3(τ, T ) is a random variable accounting for
the uncertainty involved in converting the time interval τ to T ; e4, e5, and e6 are
random variables modeling the uncertainties with respect to the actual values of
the empirical constant 0.0706 and of the roughness lengths z0 and z01, respectively.
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A possible probabilistic description of the aforementioned variables is summarized
in Table 5.3.

In applying Eq. (5.6) to the wind analysis of the Rainier Tower site, available
wind data with a record length of 46 years, in terms of annual maximum 3-s gust
wind speed at 33 ft height, i.e. v = v3 with τ = 3 s and Hmet = 33 ft, collected at
Seattle Tacoma International Airport was used. The roughness length z01 was taken
as 0.1 ft (0.03 m), i.e. open terrain conditions were condiered at the meteorological
station. Considering sampling errors generated by the limited amount of available
climatological data, this wind speed, v3, was assigned a Type I distribution with
mean and standard deviation determined from the wind data (Table 5.3). The site
of the building was characterized by a roughness length z0 = 9.8 ft (3 m) while the
averaging time of interest was one hour (T = 3600 s).

In addition to the site-specific wind speed, wind direction must also be consid-
ered. In this work, due to the lack of site specific information on the joint probability
distribution of wind speed and direction, wind directionality was modeled by reduc-
ing the non-directional wind speed, VH , in function of wind direction, α, through
the following expression:

ṼH(α) = KR(α)KD(α)VH (5.7)

where KR is a reduction factor while KD is a directionality factor. In particular,
appropriate values for KR and KD for Seattle were provided by Rowan Williams
Davies & Irwin (RWDI). To use the model of Eq. (5.7) in a stochastic simulation,
the wind direction α can be taken as a uniform distribution in [0◦, 360◦]. The values
used for KR and KD are summarized in Appendix A.3.

Given a realization of wind speed ṼH and direction α, the wind tunnel driven
wind load model of Section 3.2 of last report was adopted to simulate the stochastic
wind loads, which takes into account the record-to-record variability. To further
consider the uncertainties associated with the use of wind tunnels, three uncertain
parameters were introduced, indicated respectively as w1, w2 and w3 in Table 5.3.
In particular, w1 models the sampling errors due to the finite length of the wind
tunnel record, w2 accounts for the uncertainty due to the use of scale models, while
w3 accounts for the presence of observational errors. For a record length greater than
1 hour at full scale, w1 was taken to have a coefficient of variation (COV) of 0.075.
Through the mathematical derivation outlined in Appendix B, the aforementioned
uncertain parameters can be directly applied to the simulated full scale wind loads
as:

Fw(t; ṼH , α) = w1w2w3F(t; ṼH , α) (5.8)

where F(t; ṼH , α) are the wind loads generated without considering wind tunnel
uncertainties.
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Table 5.3: Properties of the random variables used in modeling the gravity and wind

loads.

Mean COV Distribution Reference

D 1.05Dn
a 0.1 Normal [5.8, 5.17]

Lapt 0.24Ln
a 0.6 Gamma [5.8, 5.17]

v3 57.7 (mph) 0.14 Type I —
e1 1.0 0.10 Normal —
e2 1.0 0.025 Normal [5.12]
e3

b 0.05 Normal [5.5]
e4 1.0 0.10 Truncated Normal [5.5]
e5 1.0 0.30 Truncated Normal [5.5]
e6 1.0 0.30 Truncated Normal [5.5]
w1 1.0 c Normal [5.15]
w2 1.0 0.05 Normal [5.3]
w3 1.0 0.05 Normal [5.3]
a Dn, Ln: Nominal dead load and live load
bDepends on averaging times τ and T .
cDepends on the record length.

5.2 Reliability of Rainier Square Tower

In this section, the system-level collapse susceptibility framework proposed in Sec-
tion 2.4 was adopted for the reliability evaluation of the Rainier Square Tower
considering all uncertainties identified in completing Goal 1.

5.2.1 Design target for the structure

In order to achieve a target reliability stipulated in ASCE 7-16, several adjustments
were made to the design of Rainier Square Tower supplied by MKA. In particular,
target reliabilities for structural members and connections are provided in Table
1.3-1 of ASCE 7-16 [5.1] and were developed for common limit states, such as
yielding in tension members, formation of plastic hinges, or column buckling and
connection fracture for a nominal service period of 50 years. For a Risk Category
III structure, the target component reliability is 3.25 for failure that is not sudden
and does not lead to widespread progression of damage, a classification deemed
appropriate for the members of the structural system of Rainier Square Tower. Here,
this reliability target is taken as the system-level reliability target. The goal is to
therefore re-size select members of the structure such that the system reliability β

(i)
s ,

estimated through the proposed dynamic shakedown framework (and therefore with
respect to a system-level inelastic limit state), achieves a Risk Category III target
reliability. To this end, the structure was preliminary redesigned to have an expected
elastic response under dynamic wind loads calibrated to a 300 MRI wind speed.
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Table 5.4: List of redesigned coupling beams (Please see Appendix C for element loca-

tions).

Element ID 90 182 212 1800 1929 1974 1994 1998 2012 2016 2058 2067
Substituted ID 1949 1974 1606 1647 559 86 508 2047 1364 1953 2078 2087

Wind direction was modeled as in Eq. 5.7 while all material properties were set to
their nominal values. Based on this analyses, the most critical elements resulted
to be the coupling beams. To achieve satisfactory performance, the most critical
(i.e. most under-designed) coupling beam elements were redesigned by substituting
the under-deigned element with one of greater capacity. For simplicity, the new
elements were chosen from sections already used in the structure. The IDs of the
redesigned coupling beams is reported in Table 5.4 together with the IDs identifying
the coupling beams used in redesigning the member.

5.2.2 Reliability analysis

The reliability for the adjusted structure of Section 5.2.1 was determined through
first-order reliability methods (FORM). In evaluating the reliability, the dead loads,
D, and arbitrary-point-in-time live loads, Lapt, were combined with dynamic wind
loads, W50, calibrated to the largest wind speed to occur within a period of 50 years
(the service lifetime of the structure). D, Lapt and W50 were considered uncertain
due to the uncertainties outlined in the previous sections. In FORM, the reliability
is measured by the “reliability index”, β, which is related to the failure probability
Pf through:

β = Φ−1(1− Pf ) (5.9)

where Φ−1() is the inverse of the standard normal probability distribution. To
evaluate Eq. (5.9), and therefore the reliability index, Pf can be determined through
Monte Carlo once the limit state of interest is defined.

In this work, given the random variables described in section 5.1, reliabilities are
estimated for the following three limit states of interest:

1. LS1: component-level yield limit state (traditional limit state used in current
design);

2. LS2: system-level yield limit state;

3. LS3: system-level inelastic limit state (defined as in the proposed dynamic
shakedown framework).

The reliability associated with the first limit state, denoted as β
(LS1)
c , is defined

by the most critical element, i.e. the element with lowest reliability index in the
system. To estimate system reliabilities associated with the second and third limit
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states, denoted respectively as β
(LS2)
s and β

(LS3)
s , the system-level collapse suscep-

tibility framework proposed in Section 2.4 is applied. In particular, for the LS2,
failure occurs if any of the components of the structure exits the elastic regime.
This limit state can be rapidly identified by calculating the elastic multiplier se, i.e.
the maximum amount the external loads can be multiplied by before any inelas-
ticity would occur, through the linear programming problem outlined in [5.4]. The
corresponding failure probability is therefore defined as Pf = P (se < 1). This limit
state probability is expected to be higher than or at least equal to the component
limit state probability (LS1), therefore with a lower reliability, since it is defined
as the probability of the union of all the failure events for all the elements of the
structure.

The third limit state is as defined in Section 2.4. Safety is therefore defined at
a system-level as the achievement of the state of dynamic shakedown. This limit
state fundamentally differs from those considered in current design practice as it
allows yielding to occur anywhere in the structure as long as shakedown is achieved.
In general, and as outlined in Section 2.4, this limit state is augmented through the
addition of any number of component level limit states on responses such as peak
inelastic responses at shakedown and residual deformations. In the specific case of
this example, this leads to the following definition of exceedance of LS3:

1. the inability of the structure to reach the state of dynamic shakedown;

2. peak interstory drift û ≥ h/100;

3. permanent set ur ≥ h/500;

where h is the interstory height of the structure, ûr is the vector of residual interstory
drifts, while û are the peak interstory drifts at shakedown given by:

û = max
0≤t≤T

[|u(t) + ur|] (5.10)

with u(t) the purely elastic interstory drift response at shakedown.

5.2.3 Results

To evaluate Pf , and therefore the reliability indexes with respect to LS1, LS2 and
LS3 outlined above through Eq. (5.9), the Monte Carlo scheme of the outlined in
Section 2.4 was implemented while considering Ns = 12000 (i.e. 12000 samples)
and the uncertainties outlined in section 5.1. Figure 5.3 reports the histogram of
the plastic reserves of the system in terms of sp/se. As can be seen, the plastic
reserve falls between 1.5 and 2 for most of the samples with a mean value of 1.81.
In interpreting the ratio sp/se, it should be kept in mind that larger ratios indicate
greater potential for force redistribution and therefore safe inelastic behavior. To
further illustrate the relation between wind directions and plastic reserves of the
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Figure 5.3: Histogram of plastic reserve of the system, sp/se, over all simulations.
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Figure 5.4: Mean values of the ratios, sp/se, over for all wind directions.

system, Figure 5.4 shows the mean value of sp/se for each direction. For wind loads
coming from directions that would cause acrosswind response to the structure, i.e.
close to α = {60◦, 150◦, 240◦, 330◦}, the structure would have seem to have less
capacity to shakedown, therefore resulting in a smaller ratio between the plastic
and elastic multipliers.

For the 50-year design life considered in this work, 99.86% of samples remained
elastic while 0.025% were susceptible to collapse due to non-shakedown. The re-
liability indexes for LS1, LS2 and LS3 defined in Section 5.2.2 are summarized in
Table 5.5 for combined gravity and wind loads. Table 5.5 also reports the reliability
indexes for two additional limit states, LS3a and LS3b. In particular, for LS3a
failure is defined as the peak interstory drift exceeding h/100 anywhere over the
height of the structure while for LS3b failure is defined as residual drift exceeding
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Table 5.5: Reliability indexes for the different limit states.

Limit state LS1 LS2 LS3 LS3a LS3b

First First Non-shakedown û ≥ h/100 ur ≥ h/500
Description Component System or û ≥ h/100

Yield Yield or ur ≥ h/500

Reliability index 3.14 2.99 3.48 4.92 7.51

Table 5.6: Elements with reliability indexes lower than the target reliability stipulated in

ASCE 7-16 (Please see Appendix C for element locations).

Element ID 156 238 273 1998

Reliability index β
(LS1)
c 3.14 3.14 3.21 3.12

h/500 anywhere over the height of the structure. To estimate the reliability indexes
associated with LS3a and LS3b, the following expression was used:

P
(LS3a/LS3b)
f = P (R > r̃, SD) = P (R > r̃|SD)P (SD) (5.11)

where R is the response of interest (i.e. largest peak/residual drift occurring any-
where over the height of the structure), r̃ is the limit of interest (i.e. h/100 for peak
drift and h/500 for residual drift), P (R > r̃|SD) is the probability of R exceeding
the limit r̃ conditional on shakedown, while P (SD) is the probability of shakedown.
In particular, P (SD) can be directly estimated from the samples of the Monte Carlo
simulation while P (R > r̃|SD) can be estimated after fitting a lognormal to the sam-

ples of R. To estimate the reliability indexes, P
(LS3a/LS3b)
f can then be substituted

into Eq. (5.9)

The component reliability, β
(LS1)
c , associated with LS1 was 3.14 for the most

critical element of the structure, which is lower than the target β of 3.25 for a
Risk Category III building. Table 5.6 reports the most critical elements that have
reliability indexes smaller than the target reliability. It can be observed that all
elements correspond to coupling beams. The reliability index associated with the
system-level first yield limit state, LS2, was estimated to be β

(LS2)
s = 2.99. As

expected, the reliability index of LS2 was lower than the component-reliability index
since the structure is considered failed if any one of the elements fail. Indeed, the
limit case of β

(LS2)
s = β

(LS2)
c occurs when the structure fails exclusively due to the

failure of a single common element. For this case study, however, the component for
which failure occurs depends, among other things, on the direction of the wind load
and the particular distribution of resistances. Referring to Table 1.3-1 of ASCE
7-16, as shown in Figure 5.5, this system reliability index β

(LS2)
s only exceeds the

target reliability for a Risk Category I building. This is consistent with how, apart
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Figure 5.5: Target reliability stipulated in ASCE 7-16 [5.1].

from the coupling elements of Table 5.4, all elements were initially designed (as
supplied by MKA) for a 100-year windstorm. This behavior is also seen in Tables
4.4 and 4.5 through the mean values of se that, for certain wind directions, assume
values significantly smaller than one. With respect to the system-level inelastic
limit state, the reliability index was estimated to be β

(LS3)
s = 3.48. In particular, as

observed from the analyses conducted in Chapter 4, failure occurs only due to non-
shakedown (the deformation limits on peak interstory drift and permanent set are
never exceeded). As compared with the system reliability considering first member

yield, i.e. β
(LS2)
s , the reliability of the system increased from 2.99 to 3.48. From

Table 5.5 it is interesting to observe that β
(LS3a)
s and β

(LS3b)
s well exceeded the

reliability index associated with LS3, i.e. β
(LS3)
s = 3.48, indicating how the system

was not susceptible to failure due to excessive peak or residual drifts.
The results of this section clearly illustrate the advantage of allowing controlled

inelasticity in order to increase the reliability of the system. Indeed, by considering
this limit state, the structure satisfied, for all intents and purposes, the target reli-
ability for a Risk Category IV building. Of particular interest is the comparison of
β
(LS3)
s with β

(LS1)
c , i.e. classic component reliability, which shows how a system de-

signed to satisfy a Risk Category II design using traditional approaches can achieve
a Risk Category IV classification by adopting the inelastic system-level limit state
proposed in this research and outlined in section 5.2.2.

In addition, Table 5.7 reports the elements experiencing inelasticity for the 3
samples of the Monte Carlo simulation for which LS3 was not satisfied, i.e. the
structure was susceptible to collapse. It is interesting to observe how the number of
elements experiencing damage reached as high as 147 and involved both coupling
beams and wall elements.
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Table 5.7: Number of inelastic elements for the 3 samples of the Monte Carlo simulation

for which Limit State 3 was not satisfied.

Sample 1 2 3

Elastic multiplier se 0.6566 0.5419 0.6458
Plastic multiplier sp 0.7502 0.8495 0.9030

# of Inelastic elements 147 126 65

5.3 Wind Record Selection Procedure

The algorithms developed in this work can also be used to identify the wind records
(wind speed, direction and associated wind load history) causing inelasticity and
susceptibility to collapse as defined through the limit states of Sec. 5.2.2. In par-
ticular, if the interest is exclusively the identification of the aforementioned wind
records, then only the linear programming problem of Chapter 1 has to be solved
therefore increasing computational efficiency. The overall wind record selection pro-
cedure entails the following steps:

1. Setup a shakedown model as outlined in this Chapter;

2. For each sample of the Monte Carlo simulation solve the linear programming
problem of Chapter 1;

3. If for the i simulation point the following holds: s
(i)
e < 1, save the wind record

and associated metadata, e.g. wind speed v̄
(i)
H , wind direction α

(i)
H , se, sp, and

number and location of elements experiencing inelasticity.

At the end of the simulation, the wind records can be ordered in terms of se, i.e.
in terms of the fraction of the dynamic load necessary for first yield of the system.
Because sp is also available for each simulation, knowledge of whether the system
can shakedown under the wind load history is also available. In particular, by also
running the strain-driven shakedown models of Chapter 1, LS3 of Sec. 5.2.2 can be
evaluated therefore enabling identification of the wind records associated with the
β values of Table 5.5 and LS3.

To illustrate the procedure the samples for which se < 1 for the 12000 point
Monte Carlo simulation of Sec. 5.2.3 are reported in Table 5.8 after ordering in as-
cending order of se. As can be seen, 17 records are identified as causing inelasticity
with three (highlighted bold in Table 5.8) causing conditions that could lead to col-
lapse, i.e. LS3 was not satisfied. In particular, these highlighted records are directly
associated with the β values of LS3, while the remaining records are representative
of the β values of LS1 and LS2 (i.e. first component/system yield). Finally, from
the Monte Carlo seed number (i.e. MC sample #), the critical wind record of inter-
est can be regenerated and used in a nonlinear response history analysis with the



Chapter 5 Concluding Remarks 110

Table 5.8: Ordered list of samples for which se < 1, i.e. for which inelasticity occurred

in the system. Bold entries indicated samples for which the system did not satisfy Limit

State 3 and was therefore susceptible to collapse.

MC sample # of inelastic elements se sp v̄H α

911 126 0.5419 0.8495 51.9863 200
11198 37 0.5552 1.0120 50.4816 220
2513 65 0.6458 0.9030 53.0298 220
9543 147 0.6566 0.7502 57.0039 240
1232 7 0.7292 1.3511 44.6625 160
1168 5 0.8390 1.4822 38.5584 250
4003 3 0.8558 1.7911 37.8207 220
8346 4 0.8571 1.1868 45.3168 250
1657 12 0.8987 1.2207 42.2747 320
4448 14 0.8992 1.0867 43.0450 220
7698 7 0.9071 1.4458 47.4065 210
5309 3 0.9556 1.1895 42.9522 250
2762 3 0.9593 1.3179 43.7758 220
2613 5 0.9632 1.2497 39.9690 250
5765 6 0.9684 1.2138 45.0684 250
534 3 0.9821 1.1230 40.1394 330
2630 3 0.9864 1.4728 49.3072 160

aim of validating the results of the shakedown model, or estimating the behavior of
the system for load levels that are consistent with the β values of Table 5.5.

5.4 Concluding Remarks

The primary objective of the work carried out in this chapter was the estimation of
the reliability of the Rainier Square Tower. In this respect, reliability indexes for
three different limit states, including component yield, system-level first yield, and
system-level inelastic failure due to non-shakedown and/or excessive plastic defor-
mation, were evaluated. To carry out the reliability analysis, a carefully selected
range of uncertainties consistent with modern code development was considered. To
assess the reliability indexes, the Monte Carlo simulation framework developed in
this project was implemented. In particular, it was seen that a building achieving
a Risk Category II with respect to classic component-level limit states on strength
could achieve a Risk Category IV classification at system-level by considering as a
system-level limit state the achievement of dynamic shakedown without excessive
residual/peak inelastic drifts. This is a particularly noteworthy result if it is kept in
mind that, apart from the coupling elements of Table 5.4, all elements were initially
designed (as supplied by MKA) for a 100-year windstorm. In other words, this
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Chapter illustrated through an example how controlled inelastic behavior can pro-
vide a means to achieve equivalent Risk Category performances when starting with
designs for reinforced concrete structures that use notably less rebar than required
in traditional design approaches. This clearly illustrates the potential of designing
wind-excited structures to have controlled inelasticity at ultimate load levels.
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Chapter 6

Conclusions and Future Directions

This project introduced a new generation of computational tools for the system-
level inelastic performance assessment of wind excited structural systems. The
tools were based on developing a class of path-following algorithms that enable the
rapid estimation of the state of dynamic shakedown together with a full range of
inelastic responses at shakedown. The models were developed within the setting of
concentrated plasticity as well as distributed plasticity. In particular, with respect to
distributed plasticity, models were introduced for estimating inelasticity at both the
level of an individual fiber and the level of the member cross-section. To validate the
models, a suite of example concrete and steel structures were considered. Dynamic
and inelastic responses estimated from the proposed framework were compared with
those estimated from direct integration. The near perfect correspondence between
the results obtained through the two approaches provided an initial validation of
the procedures.

The successful development of these models and procedures enables the intro-
duction of a new system-level limit state, defined as the achievement of the state of
dynamic shakedown together with the satisfaction of an arbitrary number of local
limit states written in terms of inelastic responses at shakedown, against which to
assess the adequate performance of a wind excited system experiencing inelasticity.
Importantly, due to the nature of dynamic shakedown, this limit state inherently
ensures safety against collapse mechanisms involving ratcheting in the alongwind
direction, and low-cycle fatigue in the acrosswind direction. The computational
efficiency with which the proposed algorithms can assess the limit state for any
given wind load history enables the introduction of a Monte Carlo scheme for rapid
probabilistic evaluation of the limit state while considering a full range of uncertain-
ties, including record-to-record variability in the load histories. These developments
allowed for the straightforward estimation of the reliability of the system against
inelastic failure described through the aforementioned limit state, therefore open-
ing the door to the design of wind excited systems with controlled inelasticity at
ultimate load levels.

The potential of this fundamental shift in design philosophy was illustrated on
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a 3D concrete core system with outriggers, for which Risk Category IV ASCE 7-
16 reliability targets were achieved for a design that achieved Risk Category II
component reliability targets.

Future directions of this work would entail the development of additional theoret-
ical models for describing a general class of nonlinear components, such as nonlinear
hysteretic dissipation devices, or components specifically designed to experience con-
tinued inelasticity (i.e. buckling-restrained braces), that could be integrated with
the path-following strain-driven dynamic shakedown algorithms of Chapter 1. This
would enable a hybrid approach to inelastic performance where certain elements are
designed to shakedown during the windstorm, while other elements are designed to
dissipate energy through controlled but continuous inelasticity. Such developments
would result in greater controlled excursion into the inelastic response regime, there-
fore further enhancing the already extremely promising results reported in Chapter
5. To guarantee the accuracy of predictions at such high levels of inelasticity, the
framework would require the incorporation of procedures that model the effects of
large displacements and therefore P-Delta effects. Finally, the development of a
comprehensive user-friendly interface would enable the straightforward use of the
models outlined in this report, as well as any future developments, by a wide range
of design professionals of diverse backgrounds. This would unleash the full poten-
tial of allowing inelasticity at the ultimate load level in the design of wind excited
structural systems.
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A.1 Model level elevations

22”

27”

21”

18.5”

21”

21”

237”

233”

171”

162.5”

162.5”

165”

165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

21” 165”

165”

165”

165”

165”

165”

165”

165”

21”

21”

21”

21”

21”

21”

21”

21” 168”

30”
240”

38”
247”

38”

0”

237”

470”

641”

803.5”

966”

1131”

1296”

1461”

1626”

1791”

1956”

2121”

2286”

2451”

2616”

2781”

2946”

3111”

3276”

3441”

3606”

3606”

3771”

3936”

4101”

4266”

4431”

4596”

4761”

4926”

5091”

5256”

5421”

5586”

5751”

5916”

6084”

6324”

6571”



Chapter A Model level elevations 119

38”

312”

38”

20”

174”

156”

156”

156”

156”

156”

156”

156”

156”

156”

156”

156”

156”

156”

156”

156”

156”

20”

20”

20”

20”

20”

20”

20”

20”

20”

20”

20”

20”

20”

20”

20”

20” 172”

186”40”

34”
196”

6571”

6883”

7057”

7213”

7369”

7525”

7681”

7837”

7993”

8149”

8305”

8461”

8617”

8773”

8929”

9085”

9241”

9397”

9553”

9725”

9911”

10107”



Chapter A Elements assumed elastic in shakedown analysis 120

A.2 Elements assumed elastic in shakedown anal-

ysis

7 600 1123 1633

56 601 1124 1634

57 655 1173 1683

69 656 1174 1684

131 657 1175 1685

132 711 1224 1734

133 712 1225 1735

143 713 1226 1736

196 767 1275 1785

197 768 1276 1786

198 769 1277 1787

252 823 1326 1836

253 824 1327 1837
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320 880 1378 1888

321 881 1379 1889
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376 936 1429 1938

377 937 1430 1944
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A.3 Wind speed transformation scheme

In converting the 3-s gust basic wind speed v̄3 at 33-ft height to the mean hourly
wind speed v̄3600 at 2000-ft reference height, this work adopts the following trans-
formation scheme:

v̄3600 =

(
600

10

)0.14 ( v̄3
1.525

)
KRKD (A.1)

where v̄3600 and v̄3 are in mph while the reduction factor KR and the directionality
factor KD are provided in Table A.1.

Table A.1: Values of v̄w, KR, and KD for different wind directions.

α(◦) v̄ws(ft/s) KR KD α(◦) v̄ws(ft/s) KR KD

10 20.2 0.976 0.78 190 20.5 0.992 1.00

20 20.3 0.986 0.69 200 20.4 1.015 1.00

30 20.3 0.986 0.69 210 20.0 0.986 0.99

40 20.2 0.984 0.65 220 20.0 0.986 0.97

50 20.2 0.995 0.70 230 20.0 0.986 0.97

60 20.2 0.995 0.76 240 19.9 0.986 0.97

70 20.3 0.985 0.80 250 19.9 0.989 0.97

80 20.5 0.985 0.81 260 20.4 0.989 0.94

90 20.6 0.999 0.82 270 20.3 0.989 0.87

100 21.0 0.999 0.82 280 20.3 0.989 0.80

110 20.9 0.985 0.82 290 20.3 0.989 0.72

120 20.7 0.995 0.82 300 20.0 0.955 0.69

130 20.4 0.995 0.82 310 19.8 1.006 0.74

140 20.3 1.001 0.88 320 19.8 1.006 0.77

150 20.2 0.988 0.96 330 20.1 1.006 0.78

160 20.2 0.988 1.00 340 20.2 1.006 0.78

170 20.2 0.981 1.00 350 20.0 0.976 0.78

180 20.4 0.992 1.00 360 20.1 0.970 0.78
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A.4 Inelastic elements for a representative sam-

ple

A.4.1 Wind load of 300 MRI
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Appendix B

Inclusion of wind tunnel
uncertainties

As presented in Section 3.2 of last report, the stochastic wind loads F(t) corre-
sponding to the intensity measure ṼH and the wind direction α is represented by
the superposition of Nl independent vector-valued subprocesses as follows:

F(t; ṼH , α) =

Nl∑
j=1

Fj(t; ṼH , α) (B.1)

where Fj(t) is the jth vector-valued subprocess given by:

Fj(t; ṼH , α) =

Nf∑
k=1

|Ψj(ωk;α)|
√

2Λj(ωk; ṼH , α)∆ωk × cos(ωkt+ ϑkj + θj(ωk))

(B.2)
where Ψj(ωk) and Λj(ωk) are the jth frequency dependent eigenvector and eigen-
value of F(t), Nf is the total number of discrete frequencies considered in the interval
[0, Nf∆ωk] with ∆ωk representing the frequency increment, ϑkj are independent and
uniformly distributed random variables in [0, 2π], while θj is a vector of complex
angles. In particular, Λj(ωk) and Ψj(ωk) are related to eigenvalues and eigenvectors
of scaled experimental loads, fw(t̃), through the following scheme:

Λj(ωk; ṼH) =

( ṼH

v̄w

)2
2(

v̄w

ṼH

)
Λ

(w)
j (ω̃k) (B.3)

Ψj(ωk) = Ψ
(w)
j (ω̃k) (B.4)

where v̄w is the mean hourly wind speed at the reference height to which the wind

tunnel loads fw(t̃) were scaled, ωk =
ṼH

v̄w
ω̃k with ω̃k the kth frequency step at the wind
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tunnel reference speed, while Λ
(w)
j (ω̃k) andΨ

(w)
j (ω̃k) are eigenvalues and eigenvectors

of fw(t̃) determined from the following eigenvalue problem:

[Sfw(ω̃k; v̄w, α)− Λ(w)(ω̃k; v̄w, α)I]Ψ
(w)(ω̃k;α) = 0 (B.5)

where Sfw is the cross power spectral density of fw(t̃). To consider uncertainties
associated with the use of wind tunnel data, the wind tunnel loads fw(t̃) should be
multiplied by the uncertain parameters w1, w2 and w3 of Table 5.3. This multi-
plication will obviously affect the simulated wind loads F(t). To model this effect,
consider a corrected wind tunnel load, i.e. f̃w(t̃) = w1w2w3fw(t̃). The associated
cross power spectral density is:

S̃fw = (w1w2w3)
2Sfw (B.6)

The corresponding eigenvalues become Λ̃
(w)
j (ω̃k) = (w1w2w3)

2Λ
(w)
j (ω̃k), while the

eigenvectors remain the same. The eigenvalues of the simulated wind loads f(t)
can then be determined through the transformation of Eq. (B.3), which yields
Λ̃j(ωk; ṼH) = (w1w2w3)

2Λj(ωk; ṼH). Hence, by substituting into Eq. (B.2) and
summing over all Nl modes, the corrected stochastic wind loads can be expressed
as:

Fw(t; ṼH , α) = w1w2w3f(t; ṼH , α) (B.7)
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1132

1064



1640 1641 1643

1670 1677

1642

1674

1589 1590 1592

1619 1626

1591

1623

1538 1539 1541

1568 1575

1540

1572

1487 1488 1490

1517 1524

1489

1521

1436 1437 1439

1466 1473

1438

1470

1385 1386 1388

1415 1422

1387

1419

1334 1335 1337

1364 1371

1336

1368

1283 1284 1286

1313 1320

1285

1317

1232 1233 1235

1262 1269

1234

1266

1181 1182 1184

1211 1218

1183

1215



1691 1692 1694

1721 1728

1693

1725

1742 1743 1745

1772 1779

1744

1776

1793 1794 1796

1823 1830

1795

1827

1844 1845 1847

1874 1881

1846

1878

1896 1897 1899

1922 1929

1898

1926

1941 1942 1945

1967
1974

1943

1971

1986 1987 1990

2012
2019

1988

2016

1944 1946

1989 1991



2030 2032

2047

2067

2031 2033

2054 2055

2074 2075

2087

2094 2095

2107

2114 2115

2127

2134 2135

2147

2154 2155

2167

2174 2175

2187

2194 2195

2207

2214 2215

2227



2234 2235

2247

2254 2255

2267

2274 2275

2287

2294 2295

2307

2314 2315

2327

2334 2335

2347

2354 2355

2367

2374 2375

2387

2394 2395

2407

2414 2415

2427

2434 2435

2447



Outrigger 
columns

Level 1 to 38:
2518-2555

Level 1 to 38:
2556-2593

Level 1 to 38:
2594-2631

Level 1 to 38:
2632-2669

Level 1 to 38:
2670-2707

Level 1 to 38:
2708-2745
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